ANALYSIS of RHYTHMIC GENE TRANSCRIPTION USING the Timer, a NOVEL

Total Page:16

File Type:pdf, Size:1020Kb

ANALYSIS of RHYTHMIC GENE TRANSCRIPTION USING the Timer, a NOVEL ANALYSIS OF RHYTHMIC GENE TRANSCRIPTION USING THE TimeR, A NOVEL TECHNOLOGY TO CAPTURE ZEBRAFISH EMBRYOS by LAIN XYLIA PIERCE Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Jennifer O. Liang, PhD Department of Genetics CASE WESTERN RESERVE UNIVERSITY August 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents 1 List of Tables 3 List of Figures 3 Abstract 5 Chapter 1: Background and Significance Circadian Rhythms 7 The Importance of Circadian Rhythms in Humans 8 The Clock, Cell Division and Cancer 10 The Vertebrate Circadian System 12 The Mammalian Molecular Clock 13 The Zebrafish Molecular Clock 15 Photoreception and Circadian Entrainment 16 Studying the Circadian Clock 17 Summary of Scientific Contributions 18 Chapter 2: The Time Reaper 5­channel Automatic Liquid Dispenser: a new tool for studying zebrafish development Abstract 21 Introduction 22 Results and Discussion 23 Design and use of the TimeR 23 1 The TimeR is an effective tool for fixing zebrafish embryos 25 Materials and Methods 27 Acknowledgements 29 Chapter3: Novel functions for Period 3 and Exo­rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ Abstract 43 Introduction 44 Results 45 exorh transcription is rhythmic 45 Otx5 activates exorh transcription 46 Per3 negatively regulates exorh transcription during the day 47 Loss of Exorh protein reduces transcription from the exorh promoter 48 Exorh does not initiate transcription of red opsin 50 Exorh is required for high levels of aanat2 expression 50 Discussion 50 Exorh protein is important for gene transcription in the zebrafish pineal organ 50 The pattern of exorh transcription is controlled by a combination of tissue­specific and rhythmic factors 51 Experimental Procedures 55 Acknowledgements 57 2 Chapter 4: Discussion and Future Directions Novel function for Exorh in regulating gene transcription in the zebrafish pineal organ 86 Novel function for Per3 in regulating the phase of expression for a rhythmic gene. Per3 had been identified but function was not well understood 88 Rhythmic genes are regulated by tissue specific factors that restrict special expression and rhythmic factors that generate the daily changes in mRNA levels 91 Connections between phototransduction and circadian rhythms 94 References 100 3 List of Tables Chapter 2 Supplementary Parts List 51 Chapter 3 Table 1: Overexpression of Otx5 induces ectopic expression of the exorh:GFP transgene 70 Supplementary Table 1: Analysis of exorh expression using the Student’s t‐test 85 4 List of Figures Chapter 1 Figure 1: The Vertebrate Circadian System 24 Figure 2: The Mammalian Circadian Clock 26 Figure 3: Alignment of amino acid sequences across visual and pineal Opsins 28 Figure 4: Phylogenetic tree comparing zebrafish exorhodopsin to other vertebrate Opsins 30 Chapter 2 Figure 1: The TimeR 42 Figure 2: Flow of liquids through the TimeR 44 Figure 3: The strength and pattern of the signal from WISH is indistinguishable between embryos fixed with the TimeR and embryos fixed manually 46 Figure 4: Whole mount immunostaining on TimeR and manually fixed embryos 48 Figure 5: Temperature of fixative does not diminish the effectiveness or accuracy of either WISH or Immunostaining 50 Chapter 3 Figure 1. There are significant changes in exorh expression levels between day and night 72 Figure 2. Otx5 controls the tissue‐spec ificity of exorh transcription 74 Figure 3. Daytime expression of exorh is increased in embryos lacking Per3 76 5 Chapter 3 Figures cont. Figure 4. Expression from the exorh promoter is decreased in embryos lacking Exorh protein 79 Figure 5. Exorh is required for high levels of aanat2 tran s cription 81 Figure 6. Model for the regulation of exorh expression 83 Supplem entary Figure 1. Exorh protein is required for exorh transcription throughout the circadian cycle 84 Chapter 4 Figure 1. The Molecular Pathway Between Light and Transcription 97 Figure 2: Conclusions and Future Directions 99 6 Analysis of Rhythmic Gene Transcription using the TimeR, a Novel Technology to Capture Zebrafish Embryos Abstract by LAIN XYLIA PIERCE Circadian rhythms are predictable oscillations in behavior such as the sleep wake cycle and biomolecular profiles such as rhythmic changes in gene transcription. These oscillations receive entraining cues from environmental inputs such as the light/dark photoperiod that regulate endogenous molecular clocks which in turn produce rhythmic outputs. The zebrafish pineal organ is an excellent model to study these molecular profiles because phototransducive molecules as well as the clock and its outputs are all housed within the same cells. Additionally, zebrafish embryos undergo rapid and external development such that the molecular pineal clock is functional in as little as 24 hours post fertilization. However, capturing embryonic samples at all time points in the circadian cycle can be challenging. Not only is the health of the researcher compromised when working odd hours but experimental results may be altered by handling samples at inappropriate times. To address this issue, I have led the research and design of a new technology. 7 The Time Reaper 5‐Channel Automatic Liquid Dispenser (TimeR) delivers up to 50 mL of paraformaldehyde to embryos in a Petri dish at preset times. In testing the TimeR I have shown that the pattern of expression for a number of genes is indistinguishable between embryos fixed manually versus remotely and that the TimeR is also suitable for fixing embryos for whole mount immunostaining. The TimeR was used frequently in securing data for the body of my dissertation work. The zebrafish opsin protein Exo‐rhodopsin (Exorh) is expressed in pineal photoreceptors and is a candidate to mediate the effects of environmental light on pineal rhythms and melatonin synthesis. We demonstrate that Exorh has an important role in regulating gene transcription within the pineal. In developing embryos that lack Exorh, expression of the exorh gene itself and of the melatonin synthesis gene serotonin N‐acetyl transferase 2 (aanat2) are significantly reduced. This suggests that Exorh protein at the cell membrane is part of a signaling pathway that positively regulates transcription of these genes, and ultimately melatonin production, in the pineal. Like many other opsin genes, exorh is expressed with a daily rhythm: mRNA levels are higher at night than during the day. We find that the transcription factor Orthodenticle homeobox 5 (Otx5) activates exorh transcription, while the putative circadian clock component Period 3 (Per3) represses expression during the day, thereby contributing to the rhythm of transcription. This work identifies novel roles for Exorh and Per3, and gives insight into potential interactions between the sensory and circadian systems within the pineal. 8 Chapter 1: Background and Significance Circadian Rhythms Circadian rhythms are biochemical and behavioral changes that occur with a period of approximately 24 hours. For example, these biorhythms control the timing of sleeping, waking, feeding and socializing. The oscillations of the clocks that drive these rhythms are self‐driven and can be steadily maintained without environmental influence. Thus, circadian rhythms allow animals to not only respond to the environment but to anticipate environmental changes. Daido(Daido, 2002) and Michael and colleagues (Michael and McClung, 2003; Michael et al., 2003) theorize that clock entrainment produces evolutionary fitness, which may explain the fact that nearly every organism studied to date possesses a circadian clock. The circadian clock is a self‐sustained oscillator driven by a set of feed‐back loops. One full revolution of the clock requires approximately 24 hours to be completed. However, the word “approximately” cannot be overstated. The endogenous human clock takes 24 hours 11 minutes ±16 minutes to complete a revolution(Czeisler et al., 1999). Clearly, if left unadjusted the molecular clock would slowly drift in and out of synchronization with the surrounding environment. Therefore, the timing of the clock contains a certain amount of plasticity. The clock can re‐set its position in the cycle in response to daily environmental cues, with the most powerful cue being photoperiod. This daily coordination is called “entrainment” and allows the molecular and physical behaviors of an organism to mirror appropriate environmental conditions. Clock plasticity is also beneficial 9 when considering adaptation to changes in day length due to the changing seasons or migration and how day length affects physical security, food and mate availability. Thus, some of the same mechanisms, such as the hormone melatonin, are involved in both circadian and seasonal rhythms (Wehr, 1997). The Importance of Circadian Rhythms in Humans Over the past few years the
Recommended publications
  • NPAS2 As a Transcriptional Regulator of Non-Rapid Eye Movement Sleep: Genotype and Sex Interactions
    NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: Genotype and sex interactions Paul Franken*†‡, Carol A. Dudley§, Sandi Jo Estill§, Monique Barakat*, Ryan Thomason¶, Bruce F. O’Hara¶, and Steven L. McKnight‡§ §Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; *Department of Biological Sciences, Stanford University, Stanford, CA 94305; ¶Department of Biology, University of Kentucky, Lexington, KY 40506; and †Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne-Dorigny, Switzerland Contributed by Steven L. McKnight, March 13, 2006 Because the transcription factor neuronal Per-Arnt-Sim-type sig- delta frequency range is a sensitive marker of time spent awake (4, nal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor 7) and local cortical activation (8) and is therefore widely used as and an effector of intracellular energy balance, and because sleep an index of NREMS need and intensity. is thought to correct an energy imbalance incurred during waking, The PAS-domain proteins, CLOCK, BMAL1, PERIOD-1 we examined NPAS2’s role in sleep homeostasis using npas2 (PER1), and PER2, play crucial roles in circadian rhythm gener- knockout (npas2؊/؊) mice. We found that, under conditions of ation (9). The NPAS2 paralog CLOCK, like NPAS2, can induce the increased sleep need, i.e., at the end of the active period or after transcription of per1, per2, cryptochrome-1 (cry1), and cry2. PER and sleep deprivation (SD), NPAS2 allows for sleep to occur at times CRY proteins, in turn, inhibit CLOCK- and NPAS2-induced when mice are normally awake. Lack of npas2 affected electroen- transcription, thereby closing a negative-feedback loop that is cephalogram activity of thalamocortical origin; during non-rapid thought to underlie circadian rhythm generation.
    [Show full text]
  • A Wheel of Time: the Circadian Clock, Nuclear Receptors, and Physiology
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE A wheel of time: the circadian clock, nuclear receptors, and physiology Xiaoyong Yang1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA It is a long-standing view that the circadian clock func- The rhythmic production and circulation of many tions to proactively align internal physiology with the hormones and metabolites within the endocrine system 24-h rotation of the earth. Recent studies, including one is instrumental in regulating regular physiological pro- by Schmutz and colleagues (pp. 345–357) in the February cesses such as reproduction, blood pressure, and metabo- 15, 2010, issue of Genes & Development, delineate strik- lism. Levels of circulating estrogen and progesterone ingly complex connections between molecular clocks and fluctuate with the menstrual cycle, which in turn affect nuclear receptor signaling pathways, implying the exis- circadian rhythms in women (Shechter and Boivin 2010). tence of a large-scale circadian regulatory network co- In parallel with a diurnal rhythm in circulating adrenocor- ordinating a diverse array of physiological processes to ticotropic hormone, secretion of glucocorticoids and aldo- maintain dynamic homeostasis. sterone from the adrenal gland rises before awakening (Weitzman 1976). Glucocorticoids boost energy produc- tion, and aldosterone increases blood pressure, together gearing up the body for the activity phase. Similarly, Light from the sun sustains life on earth. The 24-h plasma levels of thyroid-stimulating hormone and triiodo- rotation of the earth exposes a vast number of plants thyronine have a synchronous diurnal rhythm (Russell and animals to the light/dark cycle.
    [Show full text]
  • Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
    General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland.
    [Show full text]
  • Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
    Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm.
    [Show full text]
  • Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
    Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries
    [Show full text]
  • Correlation Between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-Like Growth Factor-I
    3268 Correlation between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-like Growth Factor-I Lisa W. Chu,1,2 Yong Zhu,3 Kai Yu,1 Tongzhang Zheng,3 Anand P. Chokkalingam,4 Frank Z. Stanczyk,5 Yu-Tang Gao,6 and Ann W. Hsing1 1Division of Cancer Epidemiology and Genetics and 2Cancer Prevention Fellowship Program, Office of Preventive Oncology, National Cancer Institute, NIH, Bethesda, Maryland; 3Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut; 4Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, California; 5Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China Abstract A variety of biological processes, including steroid the GG genotype. In addition, the PER1 variant was hormone secretion, have circadian rhythms, which are associated with higher serum levels of sex hormone- P influenced by nine known circadian genes. Previously, binding globulin levels ( trend = 0.03), decreasing we reported that certain variants in circadian genes 5A-androstane-3A,17B-diol glucuronide levels P P were associated with risk for prostate cancer. To pro- ( trend = 0.02), and decreasing IGFBP3 levels ( trend = vide some biological insight into these findings, we 0.05). Furthermore, the CSNK1E variant C allele was examined the relationship of five variants of circadian associated with higher
    [Show full text]
  • Effects of Circadian Clock Genes and Health-Related
    RESEARCH ARTICLE Effects of circadian clock genes and health- related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis Eugene Lin1,2,3*, Po-Hsiu Kuo4, Yu-Li Liu5, Albert C. Yang6,7, Chung-Feng Kao8, Shih- Jen Tsai6,7* 1 Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, 2 Vita Genomics, Inc., Taipei, Taiwan, 3 TickleFish Systems Corporation, Seattle, Western Australia, United States of America, a1111111111 4 Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan a1111111111 University, Taipei, Taiwan, 5 Center for Neuropsychiatric Research, National Health Research Institutes, a1111111111 Miaoli County, Taiwan, 6 Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, 7 Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan, 8 Department of Agronomy, College a1111111111 of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan a1111111111 * [email protected] (EL); [email protected] (SJT) Abstract OPEN ACCESS Citation: Lin E, Kuo P-H, Liu Y-L, Yang AC, Kao C- Increased risk of developing metabolic syndrome (MetS) has been associated with the cir- F, Tsai S-J (2017) Effects of circadian clock genes cadian clock genes. In this study, we assessed whether 29 circadian clock-related genes and health-related behavior on metabolic (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, ONE 12(3): e0173861. https://doi.org/10.1371/ PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and journal.pone.0173861 VIPR2) are associated with MetS and its individual components independently and/or Editor: Etienne Challet, CNRS, University of through complex interactions in a Taiwanese population.
    [Show full text]
  • BMAL1 and Modulates Tissue-Specific Circadian Networks
    Nuclear receptor HNF4A transrepresses CLOCK: BMAL1 and modulates tissue-specific circadian networks Meng Qua, Tomas Duffyb, Tsuyoshi Hirotac, and Steve A. Kaya,1 aKeck School of Medicine, University of Southern California, Los Angeles, CA 90089; bDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; and cInstitute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan Contributed by Steve A. Kay, November 6, 2018 (sent for review September 24, 2018; reviewed by Carla B. Green and John B. Hogenesch) Either expression level or transcriptional activity of various nuclear NRs canonically function as ligand-activated transcription receptors (NRs) have been demonstrated to be under circadian factors that regulate the expression of their target genes to control. With a few exceptions, little is known about the roles of affect physiological pathways (19). The importance of NRs in NRs as direct regulators of the circadian circuitry. Here we show maintaining optimal physiological homeostasis is illustrated in that the nuclear receptor HNF4A strongly transrepresses the their identification as potential targets for therapeutic drug transcriptional activity of the CLOCK:BMAL1 heterodimer. We development to combat a diverse array of diseases, including define a central role for HNF4A in maintaining cell-autonomous reproductive disorders, inflammation, cancer, diabetes, car- circadian oscillations in a tissue-specific manner in liver and colon diovascular disease, and obesity (20). Various NRs have been cells. Not only transcript level but also genome-wide chromosome implicated as targets of the circadian clock, which may con- binding of HNF4A is rhythmically regulated in the mouse liver. tribute to the circadian regulation of nutrient and energy me- ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK: tabolism.
    [Show full text]
  • Circadian Rhythm-Related Genes: Implication in Autoimmunity And
    Diabetes, Obesity and Metabolism 17 (Suppl. 1): 134–138, 2015. review article © 2015 John Wiley & Sons Ltd REVIEW ARTICLE Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes B. Lebailly1,2,C.Boitard1 &U.C.Rogner1 1Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département “Endocrinologie, Métabolisme et Diabètes), Paris, France 2Cellule Pasteur, University Pierre and Marie Curie, Paris, France Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system. Keywords: circadian rhythm, cytokine, immune system, transcription factor, type 1 diabetes Date submitted 10 April 2015; date of final acceptance 5 May 2015 Circadian Genes and Diabetes pathway [8]. Absence of this key circadian clock component leads to the activation of this signalling system and elevated lev- Thereisgrowingevidenceabouttheimplicationofthecirca- els of inflammatory molecules in the body. Low-grade constant dian rhythm in diabetes development [1]. Studies in mice have inflammation could be the underlying cause of chronic dis- shown that the disruption of circadian rhythms can acceler- easessuchasdiabetes.Furtherexamplesoftheinvolvementof ate diabetes and -cell loss [2].
    [Show full text]
  • Retinoic Acid-Related Orphan Receptor Rorβ, Circadian Rhythm Abnormalities and Tumorigenesis (Review)
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1493-1500, 2015 Retinoic acid-related orphan receptor RORβ, circadian rhythm abnormalities and tumorigenesis (Review) SHUJIONG FENG1, SONG XU1, ZHENZHEN WEN1 and YONGLIANG ZHU1,2 1Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine; 2Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China Received August 8, 2014; Accepted March 12, 2015 DOI: 10.3892/ijmm.2015.2155 Abstract. Nuclear receptors are a superfamily of transcription and have important physiological functions in cell develop- factors including the steroid hormone receptors, non-steroid ment and differentiation, circadian rhythm, metabolism and hormone receptors and the orphan nuclear receptor family. immune regulation. NRs consist of three components: the Retinoic acid-related orphan receptor (ROR)β, as a member of steroid hormone receptors, non-steroid hormone receptors the orphan nuclear receptor family, plays an important regula- and the orphan nuclear receptor family. Steroid and non- tory role in the maintenance of a variety of physiological and steroid hormone receptors have specific ligands, including pathological processes. RORβ has been determined to act as steroid hormones, thyroid hormones, retinoic acids and fatty an osteogenic repressor in regulating bone formation, and is acids. Ligands for orphan NRs have not yet been determined. involved in regulating circadian rhythm. The findings of recent Retinoic acid-related orphan receptors (RORs), also known studies concerning the association between tumorigenesis as nuclear receptor subfamily 1 group F members (NR1F), and circadian rhythm have shown that an aberrant circadian are specified by gene sequences, which are homologous to rhythm may promote tumorigenesis and tumor progression.
    [Show full text]
  • Titanium Biomaterials with Complex Surfaces Induced Aberrant Peripheral Circadian Rhythms in Bone Marrow Mesenchymal Stromal Cells
    RESEARCH ARTICLE Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells Nathaniel Hassan1,2, Kirstin McCarville1,2,3☯, Kenzo Morinaga1,3,4☯, Cristiane M. Mengatto1,5, Peter Langfelder6, Akishige Hokugo1,7, Yu Tahara8, Christopher S. Colwell8, Ichiro Nishimura1,2,3* a1111111111 a1111111111 1 Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, a1111111111 United States of America, 2 Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, a1111111111 California, United States of America, 3 Division of Advanced Prosthodontics, UCLA School of Dentistry, Los a1111111111 Angeles, California, United States of America, 4 Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan, 5 Department of Conservative Dentistry, School of Dentistry Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, 6 Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America, 7 Division of Plastic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America, 8 Department of Psychiatry & Biobehavioral Science, David Geffen School of OPEN ACCESS Medicine at UCLA, Los Angeles, California, United States of America Citation: Hassan N, McCarville K, Morinaga K, ☯ These authors contributed equally to this work. Mengatto CM, Langfelder P, Hokugo A, et al. * [email protected] (2017) Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS ONE 12(8): e0183359. https://doi.org/ Abstract 10.1371/journal.pone.0183359 Circadian rhythms maintain a high level of homeostasis through internal feed-forward and Editor: Shin Yamazaki, University of Texas -backward regulation by core molecules.
    [Show full text]
  • Molecular Oscillation of Per1 and Per2 Genes in the Rodent Brain: an in Situ Hybridization and Molecular Biological Study
    Kobe J. Med. Sci., Vol. 51, No. 6, pp. 85-93, 2005 Molecular Oscillation of Per1 and Per2 Genes in the Rodent Brain: An In Situ Hybridization and Molecular Biological Study DAISUKE MATSUI, SEIICHI TAKEKIDA, and HITOSHI OKAMURA Division of Molecular Brain Science, Department of Brain Science/Neuroscience, Kobe University Graduate School of Medicine Received 20 December 2005 /Accepted 26 December 2005 Key Words: in situ hybridization, cerebral cortex, clock genes, circadian rhythms, E-box, rat The circadian rhythm is originally generated by a transcription-translation based oscillatory loop where Per1 and Per2 genes locate in its central. In the rat brain, rhythmic expressions of Per1 and Per2 were observed not only in neurons of the hypothalamic suprachiasmatic nucleus (SCN) but also in those of non-SCN regions including the cerebral cortex. The E-box enhancer elements possible to regulate transcription of Per1 and Per2 genes were highly conserved in rats and mice. When E-box-activating transcription factors, CLOCK and BMAL1, were coexpressed, each of both proteins showed two molecular forms. The presence of these higher molecular weight forms seems to be correlated with the E-box mediated transcription activation. This mechanism might not be involved in the PER2 mediated suppression of E-box, since adding PER2 did not change the content of the higher molecular forms of CLOCK and BMAL1. Circadian core oscillator is thought to be composed of an autoregulatory transcription- (post) translation-based feedback loop involving a set of clock genes (3, 4, 10, 16). In this loop, Per1 and Per2 genes are located in the center of this loop, and the transcriptional oscillation of these genes reflects rhythms at cells, tissues, and system levels (10, 16).
    [Show full text]