Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011 Landscape Composition in Aspen Woodlands Under Various Modeled Fire Regimes Eva K. Strand, Stephen C. Bunting, and Lee A. Vierling Authors woodlands according to historic fire occurrence probabili- Eva K. Strand, National Interagency, Fuels, Fire, and ties, are predicted to prevent conifer dominance and loss of Vegetation Technology Transfer Team,
[email protected]. aspen stands. Stephen C. Bunting,
[email protected] and Lee A. Keywords: Aspen, Populus tremuloides, VDDT, Vierling, Department of Forest, Rangeland, and Fire Sci- TELSA, succession, disturbance, fire regime ences, University of Idaho, Moscow, ID 83844, USA, leev@ Introduction uidaho.edu. Region-wide decline of quaking aspen has caused con- Abstract cerns that human alteration of vegetation successional and Quaking aspen (Populus tremuloides) is declining across disturbance dynamics jeopardize the long-term persistence the western United States. Aspen habitats are diverse plant of these woodlands. (Bartos 2001, Kay 1997, Shepperd et communities in this region and loss of these habitats can al. 2001, Smith and Smith 2005). Aspen are an important cause shifts in biodiversity, productivity, and hydrology component that provides ecosystem diversity in the conifer across spatial scales. Western aspen occurs on the majority dominated western mountains. Aspen ecosystems provide of sites seral to conifer species, and long-term maintenance a disproportionately diverse array of habitats for flora and of these aspen woodlands requires periodic fire. We use fauna for its relatively small area on the landscape (Bartos field data, remotely sensed data, and fire atlas information 2001, Jones 1993, Kay 1997, Winternitz 1980).