The Vertebrate Retina Contains Two Types of Photoreceptors: Rods That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating Cone Photoreceptor Development Using Patient-Derived NRL Null Retinal Organoids
ARTICLE https://doi.org/10.1038/s42003-020-0808-5 OPEN Investigating cone photoreceptor development using patient-derived NRL null retinal organoids Alyssa Kallman1,11, Elizabeth E. Capowski 2,11, Jie Wang 3, Aniruddha M. Kaushik4, Alex D. Jansen2, Kimberly L. Edwards2, Liben Chen4, Cynthia A. Berlinicke3, M. Joseph Phillips2,5, Eric A. Pierce6, Jiang Qian3, ✉ ✉ Tza-Huei Wang4,7, David M. Gamm2,5,8 & Donald J. Zack 1,3,9,10 1234567890():,; Photoreceptor loss is a leading cause of blindness, but mechanisms underlying photoreceptor degeneration are not well understood. Treatment strategies would benefit from improved understanding of gene-expression patterns directing photoreceptor development, as many genes are implicated in both development and degeneration. Neural retina leucine zipper (NRL) is critical for rod photoreceptor genesis and degeneration, with NRL mutations known to cause enhanced S-cone syndrome and retinitis pigmentosa. While murine Nrl loss has been characterized, studies of human NRL can identify important insights for human retinal development and disease. We utilized iPSC organoid models of retinal development to molecularly define developmental alterations in a human model of NRL loss. Consistent with the function of NRL in rod fate specification, human retinal organoids lacking NRL develop S- opsin dominant photoreceptor populations. We report generation of two distinct S-opsin expressing populations in NRL null retinal organoids and identify MEF2C as a candidate regulator of cone development. 1 Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA. 2 Waisman Center, University of Wisconsin-Madison, Madison, USA. 3 Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA. -
Guthrie Cdna Resource Center
cDNA Resource Center cDNA Resource Center Catalog cDNA Resource Center Missouri University of Science and Technology 400 W 11th Rolla, MO 65409 TEL: (573) 341-7610 FAX: (573) 341-7609 EMAIL: [email protected] www.cdna.org September, 2008 1 cDNA Resource Center Visit our web site for product updates 2 cDNA Resource Center The cDNA Resource Center The cDNA Resource Center is a service provided by the faculty of the Department of Biological Sciences of Missouri University of Science and Technology. The purpose of the cDNA Resource Center is to further scientific investigation by providing cDNA clones of human proteins involved in signal transduction processes. This is achieved by providing high quality clones for important signaling proteins in a timely manner. By high quality, we mean that the clones are • Sequence verified • Propagated in a versatile vector useful in bacterial and mammalian systems • Free of extraneous 3' and 5' untranslated regions • Expression verified (in most cases) by coupled in vitro transcription/translation assays • Available in wild-type, epitope-tagged and common mutant forms (e.g., constitutively- active or dominant negative) By timely, we mean that the clones are • Usually shipped within a day from when you place your order. Clones can be ordered from our web pages, by FAX or by phone. Within the United States, clones are shipped by overnight courier (FedEx); international orders are shipped International Priority (FedEx). The clones are supplied for research purposes only. Details on use of the material are included on the Material Transfer Agreement (page 3). Clones are distributed by agreement in Invitrogen's pcDNA3.1+ vector. -
Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders
G C A T T A C G G C A T genes Review Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders Maureen Neitz * and Jay Neitz Department of Ophthalmology and Vision Science Center, University of Washington, Seattle, WA 98109, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-206-543-7998 Abstract: Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders. Citation: Neitz, M.; Neitz, J. -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
Jpet #245167 1
JPET Fast Forward. Published on November 21, 2017 as DOI: 10.1124/jpet.117.245167 This article has not been copyedited and formatted. The final version may differ from this version. JPET #245167 TITLE PAGE A combination of G protein-coupled receptor modulators protects photoreceptors from degeneration Tivadar Orban, Henri Leinonen, Tamar Getter, Zhiqian Dong, Wenyu Sun, Songqi Gao, Downloaded from Alexander Veenstra, Hossein Heidari-Torkabadi, Timothy S. Kern, Philip D. Kiser, and Krzysztof Palczewski jpet.aspetjournals.org Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (T.O., H. L., S. Q., at ASPET Journals on September 24, 2021 S. G., T. G., A. V., H. H-T., T. S. K., P. D. K., K. P.) Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA (T. S. K., P. D. K.) Polgenix Inc., Cleveland, OH 44106, USA (Z. D., W. S.) 1 JPET Fast Forward. Published on November 21, 2017 as DOI: 10.1124/jpet.117.245167 This article has not been copyedited and formatted. The final version may differ from this version. JPET #245167 RUNNING TITLE PAGE RUNNING TITLE: Drugs protective against retinal rod and cone degeneration. CORRESPONDENCE Krzysztof Palczewski, Dept. of Pharmacology, School of Medicine, Case Western Reserve Downloaded from University, 10900 Euclid Ave., Cleveland, OH 44106. Tel.: 216-368-4631; Fax: 216-368-1300; E-mail: [email protected] jpet.aspetjournals.org MANUSCRIPT STATISTICS Text Pages: 41 at ASPET Journals on September 24, 2021 Tables: 1 Figures: 8 References: 36 Abstract Length: 248 words Introduction Length: 742 words Discussion Length: 1436 words 2 JPET Fast Forward. -
Journal 37.Pdf
Biomaterials 34 (2013) 1911e1920 Contents lists available at SciVerse ScienceDirect Biomaterials journal homepage: www.elsevier.com/locate/biomaterials The activation of directional stem cell motility by green light-emitting diode irradiation Wei-Kee Ong a,1, How-Foo Chen b,1, Cheng-Ting Tsai b, Yun-Ju Fu a, Yi-Shan Wong a, Da-Jen Yen c, Tzu-Hao Chang d,e, Hsien-Da Huang d, Oscar Kuang-Sheng Lee f, Shu Chien g, Jennifer Hui-Chun Ho a,h,i,* a Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan b Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan c Department of Material Science and Engineering, National Tsing Hua University, HsinChu, Taiwan d Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan e Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan f Institute of Clinical Medicine, National Yang-Ming University, Taiwan g Departments of Bioengineering and Medicine, Institute of Engineering in Medicine, UC San Diego, La Jolla, CA, USA h Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan i Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan article info abstract Article history: Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by Received 12 November 2012 opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell Accepted 29 November 2012 motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green Available online 19 December 2012 LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling Keywords: pathway. -
Article Microarray Analysis and Functional Genomics Identify Novel Components of Melanopsin Signaling
Current Biology 17, 1363–1372, August 21, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.07.045 Article Microarray Analysis and Functional Genomics Identify Novel Components of Melanopsin Signaling Stuart N. Peirson,1,3 Henrik Oster,1,3 Sarah L. Jones,1 Introduction Michael Leitges,2 Mark W. Hankins,1 and Russell G. Foster1,* Mice lacking both rod and cone photoreceptors (rd/rd 1 Circadian and Visual Neuroscience Group cl) retain multiple nonvisual responses to light, including University of Oxford phase shifting of circadian behavior, acute suppression Wellcome Trust Centre for Human Genetics of pineal melatonin, and pupil constriction [1–3]. The Roosevelt Drive photoreceptors mediating these responses are a subset Oxford OX3 7BN of photosensitive retinal ganglion cells (pRGCs) that United Kingdom express melanopsin (OPN4) [4–7]. Unlike hyperpolariza- 2 The Biotechnology Centre of Oslo tion responses of the rods and cones of the outer retina, University of Oslo light triggers depolarization of pRGCs associated with P.O. Box 1125 marked changes in intracellular Ca2+ [6, 7]. Recent Blindern in vitro studies using cells transfected with melanopsin N-0317 Oslo provide compelling evidence that this protein is the Norway photopigment of the pRGCs [8–10]. The pRGC photo- transduction cascade is pertussis toxin insensitive, leading to the suggestion that melanopsin may utilize Summary an invertebrate-like signaling cascade [10, 11]. Further- more, pharmacological experiments suggest that mela- Background: Within the mammalian retina, there exists nopsin signals via a Gq-type G protein coupled to phos- a third photoreceptive system based upon a population pholipase C, resulting in TRP channel activation [9, 10, of melanopsin (Opn4) expressing photosensitive retinal 12]. -
Causes of Color Blindness: Function and Failure of the Genes That Detect Color
A REVIEW ON COLOR BLINDNESS 1 Causes of Color Blindness: Function and Failure of the Genes that Detect Color Dylan Taylor A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Fall 2020 A REVIEW ON COLOR BLINDNESS 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Gary D. Isaacs Jr., Ph.D. Thesis Chair ______________________________ Michael S. Price, Ph.D. Committee Member _____________________________ James H. Nutter, D.A. Honors Director ______________________________ Date A REVIEW ON COLOR BLINDNESS 3 Abstract Color blindness affects nearly 10% of the entire population, with multiple types of color blindness from various genetic mutations. In the following sections, the nature of light and how the human eye perceives light will be discussed. Afterward, the major forms of color blindness and their genetic causes will be considered. Once these genetic causes have been established, the current method for diagnosing color blindness will be investigated, followed by a discussion of the current treatments available to those with color blindness. Finally, a brief discussion will address possible future work for color blindness with the hope of finding better treatments and a future prevention. A REVIEW ON COLOR BLINDNESS 4 Causes of Color Blindness: Function and Failure of the Genes that Detect Color Introduction Without the human eye’s ability to detect color, the world would appear as dull as a black and white movie. However, despite our ability to detect color, not all humans perceive the same colors as one another. -
Myopia and Late-Onset Progressive Cone Dystrophy Associate to LVAVA/MVAVA Exon 3 Interchange Haplotypes of Opsin Genes on Chromosome X
Genetics Myopia and Late-Onset Progressive Cone Dystrophy Associate to LVAVA/MVAVA Exon 3 Interchange Haplotypes of Opsin Genes on Chromosome X Orsolya Orosz,1 Istv´an Rajta,2 Attila Vajas,1 Lili Tak´acs,1 Adrienne Csutak,1 Mariann Fodor,1 Bence Kolozsv´ari,1 Miklos´ Resch,3 Katalin Senyi,´ 3 Bal´azs Lesch,3 Viktoria´ Szabo,´ 3 Andr´as Berta,1 Istv´an Balogh,4 and Gergely Losonczy1,5 1Department of Ophthalmology, University of Debrecen, Debrecen, Hungary 2Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary 3Department of Ophthalmology, Semmelweis University, Budapest, Hungary 4Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary 5Department of Ophthalmology, Zuyderland-Eyescan, Sittard-Geleen, The Netherlands Correspondence: Gergely Losonczy, PURPOSE. Rare interchange haplotypes in exon 3 of the OPN1LW and OPN1MW opsin genes Department of Ophthalmology, Uni- cause X-linked myopia, color vision defect, and cone dysfunction. The severity of the disease versity of Debrecen, H-4032, Na- varies on a broad scale from nonsyndromic high myopia to blue cone monochromatism. Here, gyerdei krt. 98, Debrecen, Hungary; we describe a new genotype–phenotype correlation attributed to rare exon 3 interchange [email protected]. haplotypes simultaneously present in the long- and middle-wavelength sensitive opsin genes Submitted: December 31, 2016 (L- and M-opsin genes). Accepted: February 28, 2017 METHODS. A multigenerational family with X-linked high myopia and cone dystrophy was Citation: Orosz O, Rajta I, Vajas A, et investigated. al. Myopia and late-onset progressive cone dystrophy associate to LVAVA/ RESULTS. Affected male patients had infantile onset myopia with normal visual acuity and color MVAVA exon 3 interchange haplotypes vision until their forties. -
Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2021 doi:10.20944/preprints202107.0202.v1 Review Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders Neitz, Maureen 1,*, Neitz, Jay 1 1 University of Washington, Vision Sciences Center [email protected] * Correspondence: [email protected]; Tel.: +1-206-543-7998 Abstract: The first step in seeing is light absorption by photopigment molecules expressed in the photoreceptors of the retina. There are two types of photoreceptors in the human retina that are responsible for image formation, rods and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Further- more, they are critically important in the visual feedback mechanism that regulates refractive de- velopment of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L) and middle-wavelength (M); however, the vast major- ity (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments. Here we review mechanism by which splicing defects in these genes cause vision disorders. Keywords: colorblindness, color vision, myopia, cone photopigment, exon skipping, X-linked cone dysfunction 1. Introduction Cone photoreceptors contain light sensitive photopigments comprised of an apo- protein component termed opsin, and a covalently bound chromophore, 11-cis reti- nal. The human S cone opsin gene, OPN1SW resides on chromosome 6, while the L and M cone opsin genes, OPN1LW and OPN1MW, are located on the X-chromosome at Xq28. -
Datasheet Blank Template
SAN TA C RUZ BI OTEC HNOL OG Y, INC . OPN1MW/LW (C-19): sc-14358 BACKGROUND PRODUCT G protein-coupled receptors (GPCRs), which are characterized by containing Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide seven transmembrane α helices, elicit G protein-mediated signaling cas cades and 0.1% gelatin. in response to a variety of stimuli. The opsin subfamily, which represents Blocking peptide available for competition studies, sc-14358 P, (100 µg approximately 90 percent of all GPCRs, is comprised of photoreceptors that peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). are activated by light. It includes the red-, green- and blue-sensitive opsins and rhodopsin. The opsin subfamily consists of an apoprotein covalently linked APPLICATIONS to 11 -cis- retinal, which undergoes isomerization upon the absorption of pho - tons. This isomerization leads to a conformational change of the protein, OPN1MW/LW (C-19) is recommended for detection of the opsin proteins which results in the activation of hundreds of G proteins. Color is perceived encoded by OPN1MW and OPN1LW of human origin, and the opsin protein in humans by three pigments, which localize to retinal cone photoreceptor encoded by Opn1mw of mouse and rat origin by Western Blotting (starting cells. Mutations in the gene encoding OPN1MW and OPN1MW2 are the dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting cause of deutanopic colorblindness, whereas OPN1LW gene mutations lead dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting to protanopic colorblindness. -
Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard.