EARTHQUAKE GEOLOGY in This Issue: Mike Oskin: #Earthquake Geology in Napa Valley Department News in Memoriam: Rand Schaal CHAIR’S WELCOME

Total Page:16

File Type:pdf, Size:1020Kb

EARTHQUAKE GEOLOGY in This Issue: Mike Oskin: #Earthquake Geology in Napa Valley Department News in Memoriam: Rand Schaal CHAIR’S WELCOME 2015 -2016 NEWSLETTER VOLUME 12 #EARTHQUAKE GEOLOGY in this issue: Mike Oskin: #Earthquake Geology in Napa Valley Department News In Memoriam: Rand Schaal CHAIR’S WELCOME Dear Friends, Alumni, and Colleagues, on the cover: Napa Earthquake The Department of Earth and Planetary surface rupture moletrack through Sciences is continuing to thrive and vineyard property adjacent to build on its reputation for research Buhman road. and teaching excellence. UC Davis is ranked as having the highest impact of any university in life and earth sciences when both research output and quality are evaluated (http://dateline.ucdavis.edu/ dl_detail.lasso?id=15201&dn=060915). In addition, our graduate program remains very highly ranked, and excellent students are choosing to study in our Sarah Roeske in the Alaska Range. department. Our Geology, Natural Sciences, and Marine and Coastal Another major shift in our research Science majors remain strong and are program is a “change of hats” by continuing to grow. Dr. Sarah Roeske. Sarah helped run and managed the Electron Microprobe Lab for 25 years, and she decided to I am very pleased to announce that retire from her staff position in 2015. Professor Nicholas Pinter has joined the She will remain active in research and Earth and Planetary Sciences faculty teaching within Earth and Planetary as the new Roy J. Shlemon Chair in Sciences, but we will be hiring a new Applied Geosciences. Nicholas is an scientist to manage the probe lab. We expert in rivers and floodplains, with greatly appreciate Sarah’s decades a background in geomorphology. His of service to the department and the research spans policy development for UC Davis broader community in maintaining an floodplain land use to river flow history Earth and Planetary Sciences exceptionally high quality analytical and evolution to geomorphic signatures Newsletter, Volume 12 facility that is a pleasure to use. of Quaternary geological processes. And very importantly for our students, he is Table of Contents continuing the Ecogeomorphology of The UC-wide CalTeach/Math and page 2 Chair’s Welcome Rivers and Streams course that Professor Science Teaching (MAST) program page 4 #Earthquake Geology in Napa Jeff Mount supported with funds from remains under Earth and Planetary Valley the Shlemon Chair, providing students Sciences leadership with Professor page 6 Faculty News with intensive, multi-disciplinary Sandy Carlson taking over as faculty page 10 In Memoriam: Rand Schaal fieldwork opportunities on ecologically director after Professor Howard Day important rivers. retired last year. We are also very excited page 11 CalTeach/MAST to have a new science education leader join MAST: Susann Pinter. Susann contact us at: comes to MAST with extensive teaching, Department of Earth and Planetary Sciences teacher training, and pedagogical University of California, Davis experience that complements the skills One Shields Avenue of Mary Betty Stevenson, who built the Davis, CA 95616 program with Howard over the past 5 years. Based on the outstanding success phone: (530) 752-0350 of MAST, the addition of Susann to the email: [email protected] staff, and the desperate need for K-12 science teachers, we are hoping to raise web: http://geology.ucdavis.edu Nicholas Pinter. His research focuses on earth- surface processes (geomorphology) applied to significant foundation funds to allow facebook: search for “Geology at UC Davis” a broad range of problems. the MAST program to expand over the next several years. 2 Congratulations to the Class of 2015 As you will read in the rest of the appreciate the ability to expand student Cheers, newsletter, Earth and Planetary Sciences participation in these activities through researchers and students are performing enhanced financial support. exciting, state-of-the-art research Dawn Sumner spanning the globe. We provide both graduate and undergraduate students Finally, I wish to thank each of you with special research opportunities in who have contributed to our successes the field and in the lab, opportunities by participating in our community that prepare them for diverse careers. and representing our department as If you would like to help support these you have moved on to the next phases opportunities, please consider giving in your careers. Please come by when (https://give.ucdavis.edu/GELA) to the Cordell you are in the neighborhood and send Durrell Fund, the Rand Schaal Field updates on your activities to [email protected] Fund, or the Robert Matthews Memorial . Also, keep an eye out Endowment. These funds are used for at least two special alumni-focused exclusively to support student research events this year! We have some exciting and field experiences, and we greatly new plans developing.... 3 #Earthquake Geology in Napa Valley “The culprit for the 2014 South Napa earthquake was the West Napa fault. As we later discovered, this is not the first time that this fault has damaged the wine industry.” – Mike Oskin Featured Faculty Mike Oskin northwest, parallel to strike-slip faults and an alignment of low-amplitude of the right-lateral San Andreas system. hills occupied the center of the valley, Much of the topography of California The West Napa fault is likewise right- adjacent to the Napa River. Follow-up is related, in one way or another, to lateral, and it sits at the base of the mapping by UC Davis undergraduate active tectonics. In my research, I try to Mayacamas mountains, west of the Savannah Lisle, and field trips in March understand the evolution of topography city of Napa. Is there a component of of 2014, confirmed that the topographic in order to determine recent geologic uplift responsible for these mountains? benches were produced by repeated history, deduce patterns of uplift, and Oddly, the West Napa fault was mapped slip events on a reverse fault, and that measure rates of fault slip. This project as terminating about started out from a casual interest in halfway up the valley. earthquake hazards to our local, world- What happens north of this famous slice of wine country. The termination? Geophysical project accelerated after the 22 August data suggests a steep 2014 M6.0 South Napa earthquake boundary on the western focused attention on this problem. What side of the basin here, follows is the story of how but does not elucidate its UC Davis students, Dr. Louise Kellogg origin. and I discovered evidence that active faulting occurs along the entire length of Napa Valley, and that the size and extent I began my research by of potential earthquakes here has been poring over a 2003 lidar underestimated. I also describe some of survey that was collected the ways that 3-D visualization, and in for analysis of fish habitat particular the UC Davis KeckCAVES, in Napa Valley. Using has helped us in making this and the dynamic hillshading other discoveries following the 2014 feature of the KeckCAVES earthquake. LidarViewer point-cloud visualization software, I discovered a pair of subtle The culprit for the 2014 South Napa topographic features in earthquake was the West Napa fault. the northern part of the As we later discovered, this is not the valley, between St. Helena first time that this fault has damaged and Calistoga, that looked the wine industry: the M5.0 2000 suspicious: a set of narrow Yountville Earthquake likely occurred topographic benches lined along the same structure. Like other the southwest margin of valleys of the northern coast ranges, Simplifed map of the West Napa Fault, 2014 earthquake surface the valley, at the base of Napa Valley is elongated to the rupture, and aftershocks from 2000 and 2014 events. the Mayacamas mountains, 4 the hills were comprised of folded river gravel deposits. That May I submitted a proposal to the U.S. Geological Survey to study these features. This proposal would seem prescient a few months later. I was not in Davis on August 22, the morning of the South Napa earthquake. In southern California, visiting family, I would learn of the event about 5 hours later. The existence of surface rupture was not yet confirmed, so I immediately began to scour the web for reports of road damage, and Twitter for photographs. These revealed right- lateral offset of Highway 121/12, west Rupture across South Avenue and adjacent vineyard. Grad student Chad Trexler for scale. of Napa, coincident with one strand of the West Napa fault. So I broadcast strike of the rupture. As the extent published in Seismological Research an email to the UC Davis structural of faulting became clear, I also began Letters in May 2015. geology group to offer my field vehicle broadcasting our findings on Twitter. for earthquake field response. Alex By the end of the day, news media Morelan and Chad Trexler jumped on Nine UC Davis graduate students nationwide was following our feed for the opportunity and headed to the field participated in a follow-up special the latest information on the earthquake later that morning. studies course co-taught by Dr. Louise rupture. This team approach, with one Kellogg and I. The entire class mapped member working remotely, turned out the northern part of the fault in the field Alex, Chad, and I worked together as to be a highly effective way to cover where it is expressed in Bothe-Napa a team that day, communicating by ground quickly and make key, early State Park. Alex Morelan and Chad text and picture messages. As Alex observations before offset features were Trexler used a new photogrammetric destroyed by repair crews, and before and Chad collected slip observations, technique, known as Structure-from- much post-earthquake fault creep had I compiled a map in Google Earth and Motion, to build 3-D point clouds accrued. The results of this effort were directed them to unexplored sites along of offset features from overlapping digital photos.
Recommended publications
  • Seismogeodesy of the 2014 Mw6.1 Napa Earthquake
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Seismogeodesy of the 2014 Mw6.1 Napa earthquake, 10.1002/2015JB011921 California: Rapid response and modeling of fast Key Points: rupture on a dipping strike-slip fault • Seismogeodetic data can provide rapid earthquake models Diego Melgar1, Jianghui Geng2, Brendan W. Crowell3, Jennifer S. Haase2, Yehuda Bock2, • Rupture is fast on a dipping strike 4 1 slip fault William C. Hammond , and Richard M. Allen • The surface trace is likely not the 1 2 extension of the fault plane Seismological Laboratory, University of California, Berkeley, California, USA, Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA, 3Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA, 4Nevada Supporting Information: Geodetic Laboratory, University of Nevada, Reno, Reno, Nevada, USA • Text S1 and Figures S1–S10 • Animation S1 Abstract Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response Correspondence to: D. Melgar, systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it [email protected] provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, Citation: centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time Melgar, D., J. Geng, B. W. Crowell, combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision J.
    [Show full text]
  • The Shear Deformation Zone and the Smoothing of 10.1029/2020JB020447 Faults with Displacement Key Points: Clément Perrin1,2 , Felix Waldhauser1 , and Christopher H
    RESEARCH ARTICLE The Shear Deformation Zone and the Smoothing of 10.1029/2020JB020447 Faults With Displacement Key Points: Clément Perrin1,2 , Felix Waldhauser1 , and Christopher H. Scholz1 • Across strike distribution of aftershocks of large earthquakes 1Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA, 2Laboratoire de Planétologie et describe the width of the shear Géodynamique, Observatoire des Sciences de l’Univers de Nantes Atlantique, UMR6112, UMS3281, Université de deformation zone around large faults • The zone of active shear deformation Nantes, Université d’Angers, CNRS, Nantes, France scales with fault roughness and narrows as a power law with fault displacement Abstract We use high-resolution earthquake locations to characterize the three-dimensional • Earthquake stress drop decreases structure of active faults in California and how it evolves with fault structural maturity. We investigate with fault displacement and hence fault roughness or displacement rate the distribution of aftershocks of several recent large earthquakes that occurred on continental strike slip faults of various structural maturity (i.e. various cumulative fault displacement, length, initiation age and slip rate). Aftershocks define a tabular zone of shear deformation surrounding the mainshock rupture Supporting Information: Supporting Information may be found plane. Comparing this to geological observations, we conclude that this results from the re-activation of in the online version of this article. secondary faults. We observe a rapid fall off of the number of aftershocks at a distance range of 0.06-0.22 km from the main fault surface of mature faults, and 0.6-1.0 km from the fault surface of immature faults. Correspondence to: The total width of the active shear deformation zone surrounding the main fault plane reaches 1.0-2.5 km C.
    [Show full text]
  • SSA 2015 Annual Meeting Announcement Seismological Society of America Technical Sessions 21--23 April 2015 Pasadena, California
    SSA 2015 Annual Meeting Announcement Seismological Society of America Technical Sessions 21--23 April 2015 Pasadena, California IMPORTANT DATES Meeting Pre-Registration Deadline 15 March 2015 Hotel Reservation Cut-Off (gov’t rate) 03 March 2015 Hotel Reservation Cut-Off (regular room) 17 March 2015 Online Registration Cut-Off 10 April 2015 On-site registration 21--23 April 2015 PROGRAM COMMITTEE This 2015 technical program committee is led by co-chairs Press Relations Pablo Ampuero (California Institute of Technology, Pasadena Nan Broadbent CA) and Kate Scharer (USGS, Pasadena CA); committee Seismological Society of America members include Domniki Asimaki (Caltech, Mechanical 408-431-9885 and Civil Engineering), Monica Kohler (Caltech, Mechanical [email protected] and Civil Engineering), Nate Onderdonk (CSU Long Beach, Geological Sciences) and Margaret Vinci (Caltech, Office of Earthquake Programs) TECHNICAL PROGRAM Meeting Contacts The SSA 2015 technical program comprises 300 oral and 433 Technical Program Co-Chairs poster presentations and will be presented in 32 sessions over Pablo Ampuero and Kate Scharer 3 days. The session descriptions, detailed program schedule, [email protected] and all abstracts appear on the following pages. Seachable abstracts are at http://www.seismosoc.org/meetings/2014/ Abstract Submissions abstracts/. Joy Troyer Seismological Society of America 510.559.1784 [email protected] LECTURES Registration Sissy Stone President’s Address Seismological Society of America The President’s Address will be presented
    [Show full text]
  • Spatial Variations in Fault Friction Related to Lithology from Rupture and Afterslip of the 2014 South Napa, California, Earthquake Michael A
    Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake Michael A. Floyd1, Richard J. Walters2,3, John R. Elliott4,5, Gareth J. Funning6, Jerry L. Svarc7, Jessica R. Murray7, Andy J. Hooper2, Yngvar Larsen8, Petar Marinkovic9, Roland Bürgmann10, Ingrid A. Johanson10,11, and Tim J. Wright2 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2 COMET, School of Earth and Environment, University of Leeds, Leeds, UK, 3 Now at COMET, Department of Earth Sciences, Durham University, Elvet Hill, Durham, UK, 4 COMET, Department of Earth Sciences, University of Oxford, Oxford, UK, 5 Now at COMET, School of Earth and Environment, University of Leeds, Leeds, UK, 6 Department of Earth Sciences, University of California, Riverside, California, USA, 7 United States Geological Survey, Menlo Park, California, USA, 8 Norut, Tromsø, Norway, 9 PPO.labs, Den Haag, Netherlands, 10 Department of Earth and Planetary Science, University of California, Berkeley, California, USA, 11 Now at Hawaiian Volcano Observatory, United States Geological Survey, Hawai’i National Park, Hawaii, USA Abstract Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate‐strengthening friction that are stressed by the main shock, but our understanding has been limited by a lack of immediate, high‐resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake in California varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone.
    [Show full text]
  • United States Department of the Interior Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM, SUMMARIES OF TECHNICAL REPORTS VOLUME XXIII Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM October 1986 OPEN-FILE REPORT 87-63 This report is preliminary and has not been reviewed for conformity with U.S.Geological Survey editorial standards Any use of trade name is for descriptive purposes only and does not imply endorsement by the USGS. Menlo Park, California 1986 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM, SUMMARIES OF TECHNICAL REPORTS VOLUME XXIII Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM Compiled by Muriel L. Jacobson Thelma R. Rodriguez The research results described in the following summaries were submitted by the investigators on May 16, 1986 and cover the 6-months period from May 1, 1986 through October 31, 1986. These reports include both work performed under contracts administered by the Geological Survey and work by members of the Geological Survey. The report summaries are grouped into the three major elements of the National Earthquake Hazards Reduction Program. Open File Report No. 87-63 This report has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Parts of it were prepared under contract to the U.S. Geological Survey and the opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. The data and interpretations in these progress reports may be reevaluated by the investigators upon completion of the research.
    [Show full text]
  • Geology, Soils, and Seismicity
    City of American Canyon—Broadway District Specific Plan Draft EIR Geology, Soils, and Seismicity 3.5 - Geology, Soils, and Seismicity 3.5.1 - Introduction This section describes the existing geology, soils, and seismicity setting and potential effects from project implementation on the site and its surrounding area. Descriptions and analysis in this section are based on information provided by the United States Geological Survey, California Geological Survey, and United States Department of Agriculture. 3.5.2 - Environmental Setting Regional Geology Napa County is located within the California Coast Range geomorphic province. This province is a geologically complex and seismically active region characterized by sub-parallel northwest-trending faults, mountain ranges, and valleys. The oldest bedrock units are the Jurassic-Crustaceous Franciscan Complex and Great Valley sequence sediments originally deposited in a marine environment. Subsequently, younger rocks such as the Tertiary-period Sonoma Volcanics group, the Plio-Pleistocene-age Clear Lake Volcanics, and sedimentary rocks such as the Guinda, Domengine, Petaluma, Wilson Grove, Cache, Huichica, and Glen Ellen formations were deposited throughout the province. Extensive folding and thrust faulting during the late Crustaceous through early Tertiary geologic time created complex geologic conditions that underlie the highly varied topography of today. In valleys, the bedrock is covered by thick alluvial soils. The project site is located within the southern portion of the Napa Valley, which consists of a large northwest-trending alluvial plain flanked by the Mayacama Mountains the west and the Howell Mountains to the east. The West Napa Fault is located within the southern portion of the Napa Valley, and the Concord-Green Valley Fault is located near the Howell Mountains along the east side of the valley.
    [Show full text]
  • And Induced Seismicity
    UNITED STATES DEPARTMENT OF THE INTERIOR " GEOLOGICAL SURVEY SUMMARIES OF TECHNICAL REPORTS, VOLUME XIII Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM Compiled by Barbara B. Charonnat External Research Program Thelma R. Rodriguez Earthquake Prediction Wanda H. Seiders Earthquake Hazards and Risk Assessment Global Seismology and Induced Seismicity The research results described in the following summaries were submitted by the investigators on November 30, 1981 and cover the 6-month period from April 1, 1981 through October 31, 1981. These reports include both work performed under contracts administered by the Geological Survey and work by members of the Geological Survey. The report summaries are grouped into the four major elements of the National Earthquake Hazards Reduction Program: Earthquake Hazards and Risk Assessment (H) Robert D. Brown, Jr., Coordinator U.S. Geological Survey 345 Middlefield Road, MS-77 Menlo Park, California 94025 Earthquake Prediction (P) James H. Dieterich, Coordinator U.S. Geological Survey 345 Middlefield Road, MS-77 Menlo Park, California 94025 Global Seismology (G) Eric R. Engdahl, Coordinator U.S. Geological Survey Denver Federal Center, MS-967 Denver, Colorado 80225 Induced Seismicity (IS) Mark D. Zoback, Coordinator U.S. Geological Survey 345 Middlefield Road, MS-77 Menlo Park, California 94025 Open File Report No. 82-6£ This report has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Parts of it were prepared under contract to the U.S. Geological Survey and the opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.
    [Show full text]
  • Tearing the Terroir: Details and Implications of Surface Rupture And
    PUBLICATIONS Earth and Space Science RESEARCH ARTICLE Tearing the terroir: Details and implications of surface 10.1002/2016EA000176 rupture and deformation from the 24 August 2014 Key Points: M6.0 South Napa earthquake, California • The 24 August 2014 South Napa earthquake ruptured the Earth’s Stephen B. DeLong1, Andrea Donnellan2, Daniel J. Ponti1, Ron S. Rubin3, James J Lienkaemper1, surface in a complex manner both 1 3 3 1 4 spatially and temporally Carol S. Prentice , Timothy E. Dawson , Gordon Seitz , David P. Schwartz , Kenneth W. Hudnut , 1 1 2 • Advanced remote sensing techniques Carla Rosa , Alexandra Pickering , and Jay W. Parker enhanced field measurements made to map and quantify surface 1U.S. Geological Survey, Menlo Park, California, USA, 2Jet Propulsion Laboratory, California Institute of Technology, deformation Pasadena, California, USA, 3California Geological Survey, Menlo Park, California, USA, 4U.S. Geological Survey, Pasadena, • The fault zone was previously mapped California, USA as complex, but there were differences between mapped faults and the surface rupture Abstract The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of Correspondence to: S. B. DeLong, surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a [email protected] ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp.
    [Show full text]
  • Final Technical Report Mapping of the West Napa
    FINAL TECHNICAL REPORT MAPPING OF THE WEST NAPA FAULT ZONE FOR INPUT INTO THE NORTHERN CALIFORNIA QUATERNARY FAULT DATABASE USGS External Award Number 05HQAG0002 Investigators John R. Wesling Department of Conservation Office of Mine Reclamation 801 K Street, MS 09-06 Sacramento, CA 95814-3529 (916) 323-9277, FAX (916) 322-4862 [email protected] Kathryn L. Hanson AMEC Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4146, FAX (510) 663-4141 [email protected] Note This final technical report also summarizes work that was completed as part of U.S. Grant Number 1434-98-GR-00018. Mr. Andrew Thomas, Dr. Frank (Bert) Swan, and Ms. Jennifer Thornberg participated in the earlier study. TABLE OF CONTENTS Page 1.0 INTRODUCTION.............................................................................................................1 1.1 APPROACH..............................................................................................................2 1.2 ACKNOWLEDGMENTS .............................................................................................3 2.0 GEOLOGIC AND TECTONIC SETTING.......................................................................4 3.0 MAPPING OF THE WEST NAPA FAULT ZONE.........................................................8 3.1 ST. HELENA – DRY CREEK .....................................................................................9 3.2 YOUNTVILLE – NORTH NAPA ...............................................................................10
    [Show full text]
  • GEOTECHNICAL INVESTIGATION REPORT Project Zeus Mare Island, Vallejo, California
    GEOTECHNICAL INVESTIGATION REPORT Project Zeus Mare Island, Vallejo, California Prepared by: Amec Foster Wheeler Environment & Infrastructure, Inc. May 1, 2017 Project No. 6166150082 Copyright © 2015 by Amec Foster Wheeler Environment & Infrastructure, Inc. All rights reserved. May 1, 2017 Project Zeus Confidential Client Subject: Geotechnical Investigation Report Project Zeus Mare Island Site Vallejo, California Project No. 6166150082.14 Dear Project Zeus Client Team: Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) is pleased to present this Geotechnical Investigation Report for the Project Zeus Mare Island site, located in Vallejo, California. We appreciate the opportunity to work with you on this project. If you have any questions or require additional information, please feel free to contact Chris Coutu at [email protected] or (510) 663-4156, or any of the undersigned team members. Sincerely, Amec Foster Wheeler Environment & Infrastructure, Inc. Chris Coutu, PE, GE Donald Wells, PG, CEG Principal Engineer Senior Associate Engineering Geologist Direct Tel.: (510) 663-4156 Direct Tel.: (510) 663-4178 E-mail: [email protected] E-mail: [email protected] cc/dw/aw/ldu X:\6166150082\3000 Rpt\Zeus Rpt\1 txt, cvrs\Zeus_MareIsland_Geotech_Text_050117.docx TABLE OF CONTENTS Page 1.0 Introduction .................................................................................................................. 1 1.1 Purpose ..........................................................................................................
    [Show full text]
  • Explanitory Text to Accompany the Fault Activity Map of California
    An Explanatory Text to Accompany the Fault Activity Map of California Scale 1:750,000 ARNOLD SCHWARZENEGGER, Governor LESTER A. SNOW, Secretary BRIDGETT LUTHER, Director JOHN G. PARRISH, Ph.D., State Geologist STATE OF CALIFORNIA THE NATURAL RESOURCES AGENCY DEPARTMENT OF CONSERVATION CALIFORNIA GEOLOGICAL SURVEY CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, Ph.D. STATE GEOLOGIST Copyright © 2010 by the California Department of Conservation, California Geological Survey. All rights reserved. No part of this publication may be reproduced without written consent of the California Geological Survey. The Department of Conservation makes no warranties as to the suitability of this product for any given purpose. An Explanatory Text to Accompany the Fault Activity Map of California Scale 1:750,000 Compilation and Interpretation by CHARLES W. JENNINGS and WILLIAM A. BRYANT Digital Preparation by Milind Patel, Ellen Sander, Jim Thompson, Barbra Wanish, and Milton Fonseca 2010 Suggested citation: Jennings, C.W., and Bryant, W.A., 2010, Fault activity map of California: California Geological Survey Geologic Data Map No. 6, map scale 1:750,000. ARNOLD SCHWARZENEGGER, Governor LESTER A. SNOW, Secretary BRIDGETT LUTHER, Director JOHN G. PARRISH, Ph.D., State Geologist STATE OF CALIFORNIA THE NATURAL RESOURCES AGENCY DEPARTMENT OF CONSERVATION CALIFORNIA GEOLOGICAL SURVEY An Explanatory Text to Accompany the Fault Activity Map of California INTRODUCTION data for states adjacent to California (http://earthquake.usgs.gov/hazards/qfaults/). The The 2010 edition of the FAULT ACTIVTY MAP aligned seismicity and locations of Quaternary OF CALIFORNIA was prepared in recognition of the th volcanoes are not shown on the 2010 Fault Activity 150 Anniversary of the California Geological Map.
    [Show full text]
  • Crustal Deformation in Great California Earthquake Cycles
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. Bll, PAGES 11,533-11,551, OCTOBER 10, 1987 Crustal Deformation in Great California Earthquake Cycles VICTOR C. LI Departmentof Civil Engineering,Massachusetts Institute of Technology,Cambridge JAMES R. RICE Division of Applied Scienceand Department of Earth and Planetary Sciences Harvard University, Cambridge, Massachusetts Periodic crustal deformation associated with repeated strike-slip earthquakes is computed for the following model; A depth L (< H) extending downward from the Earth's surface at a transform bound- ary betweenuniform elastic lithosphericplates of thicknessH is locked betweenearthquakes. It slips an amountconsistent with remoteplate velocityVp• after eachlapse of earthquakecycle time Tcy.Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress.The plates are coupled at their base to a Maxwellian viscoelasticasthenosphere through which steady deep-seatedmantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is describedapproximately through a generalizedElsasser model. We argue that the model givesa more realisticphysical description of tectonicloading, including the time dependenceof deep slip and crustal stressbuildup throughout the earthquake cycle, than do simpler kinematic models in which loading is representedas imposed uniform dislocation slip on the fault below the locked zone. Parame- ters of the model are chosen to fit seismicand geologic constraints and the apparent
    [Show full text]