Do Fruit Bats Deserve to Be Listed As Vermin in the Indian Wildlife

Total Page:16

File Type:pdf, Size:1020Kb

Do Fruit Bats Deserve to Be Listed As Vermin in the Indian Wildlife Do fruit bats deserve to be listed as vermin in the Indian Wildlife (Protection) & Amended Acts? A critical review N atarajan S ingaravelan,Ganapathy M arimuthu and P aul A. Racey Abstract Of the 13 species of fruit bats occurring in India, Introduction the Indian flying fox Pteropus giganteus, the dog-faced fruit bat Rousettus leschenaultii and the greater short-nosed fruit ats (Chiroptera) are the second largest order of mam- 1 116 2005 bat Cynopterus sphinx are distributed throughout the coun- Bmals, with . , species (Simmons, ). Among them 183 try. They usually live in trees (P. giganteus), temples and c. belong to the family Pteropodidae and are essentially caves (R. leschenaultii) and foliage (C. sphinx) and feed on vegetarian, eating fruit, pollen, nectar and leaves, and the fruits such as fig Ficus spp., Singapore cherry Muntingia remainder have more varied diets that include frugivory, calabura, Indian almond Terminalia catappa, mango Man- although most are insectivores. But within the Old World, gifera indica, guava Psidium guajava as well as leaves, nectar including India, only pteropodids eat fruit, consuming a and pollen. The other 10 species live at sea level and at wide variety of commercial and non-commercial species 1985 altitudes of . 2,000 m and their distribution and foraging (Marshall, ). They play a pivotal role as pollinators and activities may be restricted mainly to forests. Two of them, seed dispersers of many plants and in tropical forest succes- 1976 1993 the Nicobar flying fox Pteropus faunulus and Salim Ali’s sion (Start & Marshall, ; Fleming & Estrada, ; 1994 1998 fruit bat Latidens salimalii are endemic. Although details of Fleming & Sosa, ; Banack, ; Muscarella & Fleming, 2007 300 200 their foraging activity are poorly known, there is no evi- ). At least plant species of nearly genera rely dence that they visit commercial fruit orchards. They feed mainly on Old World fruit bats for their propagation 1983 1985 1991 on wild fruits and disperse seeds widely, contributing to (Marshall, , ; Fujita & Tuttle, ). Furthermore, 500 forest regeneration. Although P. giganteus, R. leschenaultii these plants produce c. economically valuable products and C. sphinx feed on commercial fruits, their role in including fruits, dyes, tannins, timber, medicines, fibres and 1991 pollination and seed dispersal of economically important fuelwood (Fujita & Tuttle, ). The importance of bats for plants such as kapok Ceiba pentandra, mahua Bassia the future availability of these products is substantial and has latifolia and petai Parkia spp. is important. Sacrificial crops been seriously underestimated. such as M. calabura can be used at orchards to reduce the damage bats cause to commercial fruit. Because the ecolog- Bats as pollinators and seed-dispersers ical services provided by bats are not appreciated by the Fruit bats are mobile foragers (Fleming & Sosa, 1994), public and conservation planners, all fruit bat species with moving genetic material in the form of pollen between one exception are still categorized as vermin and included isolated fragments of vegetation and depositing seeds over as such in Schedule V of the Indian Wildlife (Protection) large areas (Young et al., 1996; Law & Lean, 1999). They are Act, 1972 and amended Acts. It is now appropriate for the the sole or prime pollinators of several nectariferous plants Government of India to revisit this issue and consider that flower only at night (e.g. kapok Ceiba, petai Parkia, removing these pollinators and seed dispersers from the list durian Durio, Oroxylum, stinking passion Passiflora and of vermin in the Wildlife (Protection) Act. banana Musa), many of which are economically important. Keywords Conservation policy, fruit bats, India, pollina- For example, Ceiba pentandra yields a commercially valu- tion, seed dispersal, vermin, Wildlife Amended Acts able fibre, which is used for stuffing cushions and mat- tresses (Fujita & Tuttle, 1991). Durio and Parkia fruits are commercially important foods in some parts of South-East Asia (Fujita, 1988). Zoochory (seed dispersal by animals) is particularly wide- NATARAJAN SINGARAVELAN* and GANAPATHY MARIMUTHU Department of Animal Behaviour & Physiology, Madurai Kamaraj University, Madurai, spread among pioneer plants and nearly half of the most India. abundant species are bat-dispersed (Charles-Dominique, PAUL A. RACEY (Corresponding author) School of Biological Sciences, 1986). Fruit bats disperse seeds in two ways. Fruits may University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK. E-mail [email protected] be carried away from the parent tree and the seeds sub- sequently dropped under a feeding roost. Alternatively, *Current address: Institute of Evolution, University of Haifa, Mount Carmel, Israel. smaller seeds are ingested along with the fruit pulp and Received 26 February 2008. Revision requested 16 May 2008. pass through the gut to be voided in the faeces, often Accepted 4 July 2008. away from parent trees. The success of self-regeneration ª 2009 Fauna & Flora International, Oryx, 43(4), 608–613 doi:10.1017/S0030605309990391 Printed in the United Kingdom Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.234, on 30 Sep 2021 at 14:08:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605309990391 Are fruit bats vermin? 609 for many tropical trees improves if their propagules are Fruit bats of India moved away from the parents (Janzen, 1983). Smaller 120 pteropodid bats can fly up to 35 km nightly in search of Thirteen of the bat species in India are pteropodids 1 1997 food, and the larger ones (Pteropus spp.) can fly for (Table ; Bates & Harrison, ). Pteropus giganteus, longer distances (Nelson, 1965). Because they defecate or Rousettus leschenaultii and Cynopterus sphinx are dis- drop large numbers of seeds in flight, these bats are able tributed throughout most of India, generally in lowland 10 to move seeds over longer distances and wider areas than areas. The remaining species are restricted mainly to 1997 any other rainforest animals. In addition, it has been forested and island areas (Bates & Harrison, ). For ex- suggested that passage through the bat gut improves the ample, the lesser short-nosed fruit bat Cynopterus brachyo- 1999 levels of seed germination (Izhaki et al., 1995). tis (Balasingh et al., ) and Salim Ali’s fruit bat Latidens 2003 Plants that have relatively large-seeded fruits are con- salimalii (Singaravelan & Marimuthu, ) are confined to sumed by fewer dispersers, and depend on fewer species the south, especially to the Western Ghats of Tamil Nadu of mammals (Corlett, 1998). The carriage of such fruits is (and possibly also in Kerala). The island flying fox Pteropus considered to be the primary dispersal role of Pteropus hypomelanus lives only on the Andaman islands, the Nic- (Richards, 1995). These pteropodid bats are thus important obar flying fox Pteropus faunulus is endemic to the Nicobar vehicles of plant dispersal and are able to bridge the gaps islands, and the large or Malayan flying fox Pteropus between widely separated forest fragments (Corlett, 1998). vampyrus and black-eared flying fox Pteropus melanotus Several of the world’s most important domesticated food are present on both island archipelagos (Aul, 2006). Sim- staples, including bananas, plantain, breadfruit and man- ilarly Ratanaworabhan’s fruit bat Megaerops niphanae and goes, continue to rely on flying foxes for their propagation the greater long-tongued fruit bat Macroglossus sobrinus in the wild (Fujita & Tuttle, 1991). However, bananas are are restricted to north-east India. spread vegetatively and mangoes are planted by humans Detailed studies on the foraging activity of the three in rural villages in India. Wide-ranging seed dispersal en- ubiquitous bats P. giganteus, R. leschenaultii and C. sphinx courages genetic exchange between fragments of forests or reveal their role as pollinators of several plant species isolated populations of certain species and decreases the (Table 2). There is no evidence of individuals of the remain- chances of inbreeding (Loveless & Hamrick, 1984). ing 10 species, including Pteropus species on the Nicobar Through pollination of bat-dependent flowers and dis- and Andaman islands, either being caught in lowland persal of seeds into forest gaps and clearings, tropical bats areas or causing damage to commercial fruit orchards. This play an essential role in forest ecology (Cox et al., 1991; suggests that these species rely on wild fruits that are Fujita & Tuttle, 1991). Thus, they play an important role in available in their forest and island habitats. For example, secondary succession as well as in maintaining the com- remnants of wild fruits (the bead tree Eleocarpus oblongus, positional heterogeneity of tropical forests (Wang & Smith, the Ceylon plum Prunus ceylanicus and the Indian laurel 2002). fig Ficus macrocarpa) were collected at the night roosts of TABLE 1 Name, size and distribution of the 13 species of fruit bats in various states of India (Bates & Harrison, 1997). Forearm mean Bat species length (mm) Distribution in states Greater long-tongued fruit bat Macroglossus 47.3 Arunachal Pradesh, Megalaya, Mizoram, Tripura, sobrinus West Bengal Blanford’s fruit bat Sphaerias blanfordi 54.9 Arunachal Pradesh, Uttar Pradesh, West Bengal Ratanaworabhan’s fruit bat Megaerops niphanae 58.2 Arunachal Pradesh, West Bengal Lesser short-nosed fruit bat Cynopterus brachyotis 60.3 Kerala, Tamil
Recommended publications
  • Food and Foraging Preferences of Three Pteropodid Bats in Southern India
    JoTT COMMUNI C ATION 4(1): 2295–2303 Food and foraging preferences of three pteropodid bats in southern India M.R. Sudhakaran 1 & Paramanantha Swami Doss 2 1 Department of Advanced Zoology and Biotechnology, Sri Paramakalyani College, Alwarkurichi, Tamil Nadu 627412, India 2 Department of Animal Behaviour and Physiology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India Email: 1 [email protected] (corresponding author), 2 [email protected] Date of publication (online): 26 January 2012 Abstract: A study on the food, foraging and flight height in three species of pteropodid Date of publication (print): 26 January 2012 bats, namely Cynopterus sphinx, Rousettus leschenaultii and Pteropus giganteus was ISSN 0974-7907 (online) | 0974-7893 (print) conducted in Tirunelveli and Tuticorin districts of southern Tamil Nadu, India. A total of 37 species of plants were identified as potential food plants of the pteropodid bats. Editor: C. Srinivasulu The preference for fruits by pteropodids varied according to the developmental stages Manuscript details: of fruits namely, immature, unripe and ripe. There is a relationship between the forag- Ms # o2227 ing activities of bats and the moon phase. Bats exhibit a varied foraging pattern and Received 02 June 2009 flight height. A variation in the foraging flight height was observed in C. sphinx and R. Final received 19 July 2011 leschenaultii. R. leschenaultii was observed to have a higher foraging echelon than that Finally accepted 20 December 2011 of the C. sphinx. In our study we found that the C. sphinx forages normally at canopy level (up to 3.5m), R. leschenaultii forages at upper canopy levels (up to 9m) and P.
    [Show full text]
  • A History of Fruits on the Southeast Asian Mainland
    OFFPRINT A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm Occasional Paper 4 Linguistics, Archaeology and the Human Past Edited by Toshiki OSADA and Akinori UESUGI Indus Project Research Institute for Humanity and Nature, Kyoto, Japan 2008 ISBN 978-4-902325-33-1 A history of Fruits on the Southeast Asian mainland A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm ABSTRACT The paper presents an overview of the history of the principal tree fruits grown on the Southeast Asian mainland, making use of data from biogeography, archaeobotany, iconography and linguistics. Many assertions in the literature about the origins of particular species are found to be without empirical basis. In the absence of other data, comparative linguistics is an important source for tracing the spread of some fruits. Contrary to the Pacific, it seems that many of the fruits we now consider characteristic of the region may well have spread in recent times. INTRODUCTION empirical base for Pacific languages is not matched for mainland phyla such as Austroasiatic, Daic, Sino- This study 1) is intended to complement a previous Tibetan or Hmong-Mien, so accounts based purely paper on the history of tree-fruits in island Southeast on Austronesian tend to give a one-sided picture. Asia and the Pacific (Blench 2005). Arboriculture Although occasional detailed accounts of individual is very neglected in comparison to other types of languages exist (e.g.
    [Show full text]
  • List of the Import Prohibited Plants
    List of the Import Prohibited Plants The Annexed Table 2 of the amended Enforcement Ordinance of the Plant Protection Law (Amended portions are under lined) Districts Prohibited Plants Quarantine Pests 1. Yemen, Israel, Saudi Arabia, Fresh fruits of akee, avocado, star berry, Mediterranean fruit fly Syria, Turkey, Jordan, Lebanon, allspice, olive, cashew nut, kiwi fruit, Thevetia (Ceratitis capitata) Albania, Italy, United Kingdom peruviana, carambola, pomegranate, jaboticaba, (Great Britain and Northern broad bean, alexandrian laurel, date palm, Ireland, hereinafter referred to as Muntingia calabura, feijoa, pawpaw, mammee "United Kingdom"), Austria, apple, longan, litchi, and plants of the genera Netherlands, Cyprus, Greece, Ficus, Phaseolus, Diospyros(excluding those Croatia, Kosovo, Switzerland, listed in appendix 41), Carissa, Juglans, Morus, Spain, Slovenia, Serbia, Germany, Coccoloba, Coffea, Ribes, Vaccinium, Hungary, France, Belgium, Passiflora, Dovyalis, Ziziphus, Spondias, Musa Bosnia and Herzegovina, (excluding immature banana), Carica (excluding Portugal, Former Yugoslav those listed in appendix 1), Psidium, Artocarpus, Republic of Macedonia, Malta, , Annona, Malpighia, Santalum, Garcinia, Vitis Montenegro, Africa, Bermuda, (excluding those listed in appendices 3 and 54), Argentina, Uruguay, Ecuador, El Eugenia, Mangifera (excluding those listed in Salvador, Guatemala, Costa Rica, appendices 2 ,36 ,43 ,51 and 53), Ilex, Colombia, Nicaragua, West Indies Terminalia and Gossypium, and Plants of the (excluding Cuba, Dominican family Sapotaceae, Cucurbitaceae (excluding Republic,Puerto Rico), Panama, those listed in appendices 3 and 42), Cactaceae Paraguay, Brazil, Venezuela, (excluding those listed in appendix 35), Peru, Bolivia, Honduras, Australia Solanaceae (excluding those listed in (excluding Tasmania), Hawaiian appendices 3 and 42), Rosaceae (excluding Islands those listed in appendices 3 and 31) and Rutaceae (excluding those listed in appendices 4 to 8 ,39 ,45 and 56).
    [Show full text]
  • Redalyc.Olfaction in the Fruit-Eating Bats Artibeus Lituratus and Carollia
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil PAROLIN, LAYS C.; MIKICH, SANDRA B.; BIANCONI, GLEDSON V. Olfaction in the fruit-eating bats Artibeus lituratus and Carollia perspicillata: an experimental analysis Anais da Academia Brasileira de Ciências, vol. 87, núm. 4, octubre-diciembre, 2015, pp. 2047-2053 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32743236012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2015) 87(4): 2047-2053 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140519 www.scielo.br/aabc Olfaction in the fruit-eating bats Artibeus lituratus and Carollia perspicillata: an experimental analysis LAYS C. PAROLIN1, 2, 3, SANDRA B. MIKICH1 and GLEDSON V. BIANCONI4,5 1Laboratório de Ecologia, Embrapa Florestas, Estrada da Ribeira, km 111, 83411-000 Colombo, PR, Brasil 2 Departamento de Zoologia e Botânica, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brasil 3Escola de Saúde e Biociências, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-182 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação, Rua Purus, 33, 82520-750 Curitiba, PR, Brasil 5Instituto Federal do Paraná, Campus Pinhais, Rua Humberto de Alencar Castelo Branco, 1575, 83330-200 Pinhais, PR, Brasil Manuscript received on September 30, 2014; accepted for publication on January 19, 2015 ABSTRACT Studies suggest that frugivorous bats search and select fruit mainly by olfaction so that they can be attracted by smell alone.
    [Show full text]
  • Ecosystem Services Provided by Bats
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Ecosystem services provided by bats Thomas H. Kunz,1 Elizabeth Braun de Torrez,1 Dana Bauer,2 Tatyana Lobova,3 and Theodore H. Fleming4 1Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts. 2Department of Geography, Boston University, Boston, Massachusetts. 3Department of Biology, Old Dominion University, Norfolk, Virginia. 4Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Address for correspondence: Thomas H. Kunz, Ph.D., Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215. [email protected] Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • CYCADACEAE Palm-Like Dioecious Plants, the Caudex Bulb
    CYCADACEAE Palm-like dioecious plants, the caudex bulb-like, tuber­ like or columnar, simple or branched, few or several leaves borne from the apex; leaves spirally arranged, often a dense crown on the apex of the stem, coriaceous, pinnate or bipinnate, the leaflets usually linear or lanceolate, entire or dentate; inflo­ rescence borne at the apex of the caudex or lateral, cone-like, the pistillate eones broader than the staminate ones. Three genera native in Central America and about nine in the tropics of the world. Ceratozamia mexicana Brongn. is an attractive plant of Mexico and Guatemala that should be in cultivation. Dioon mejiae Standl. & L. Wms. Ceiba 1: 37. 1950. Teosinte, palma teosinte. The Indians of Olancho, Honduras, where the plant is native, boil and grind the large chestnut-like seeds and make of them a kind of tortilla of good flavor and agreeable to eat. The leaves are in demand for decorating altars and for funeral wreaths. Becoming widely distributed as an ornamental. The common name given for this plant is usually that applied to Euchlaena mexicana. Zamia loddigesii Miq. Tijdschr. Nat. Geschied. 10: 73. 1843. Camotillo, cocalito, teosinte, chacuhua. The large starchy roots are said to be used in poisoning rodents in Petén. There are reports of their use in criminal poisonings which may be or not based on fact. Standley reports that "It is stated, further, that if the root has been out of the ground three days, they cause death in three days; if dug ten days, they kill in ten days, and so on." The coastal Caribs have used the roots as food, after cooking.
    [Show full text]
  • Woody and Herbaceous Plants Native to Haiti for Use in Miami-Dade Landscapes1
    Woody and Herbaceous Plants Native to Haiti For use in Miami-Dade Landscapes1 Haiti occupies the western one third of the island of Hispaniola with the Dominican Republic the remainder. Of all the islands within the Caribbean basin Hispaniola possesses the most varied flora after that of Cuba. The plants contained in this review have been recorded as native to Haiti, though some may now have been extirpated due in large part to severe deforestation. Less than 1.5% of the country’s original tree-cover remains. Haiti’s future is critically tied to re- forestation; loss of tree cover has been so profound that exotic fast growing trees, rather than native species, are being used to halt soil erosion and lessen the risk of mudslides. For more information concerning Haiti’s ecological plight consult references at the end of this document. For present purposes all of the trees listed below are native to Haiti, which is why non-natives such as mango (the most widely planted tree) and other important trees such as citrus, kassod tree (Senna siamea) and lead tree (Leucanea leucocephala) are not included. The latter two trees are among the fast growing species used for re-forestation. The Smithsonian National Museum of Natural History’s Flora of the West Indies was an invaluable tool in assessing the range of plants native to Haiti. Not surprisingly many of the listed trees and shrubs 1 John McLaughlin Ph.D. U.F./Miami-Dade County Extension Office, Homestead, FL 33030 Page | 1 are found in other parts of the Caribbean with some also native to South Florida.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • Screening of Michelia Champacca and Muntingia Calabura Extracts for Potential Bioactives Dr
    Dr. S.Vijayanand et al. / International Journal of Pharma Sciences and Research (IJPSR) Screening of Michelia champacca and Muntingia calabura extracts for potential Bioactives Dr. S.Vijayanand and Ann Steffy Thomas Department of Life sciences, Kristu Jayanti College (Autonomous), Bangalore-560077 *Corresponding author [email protected] Abstract - The present study was carried out to evaluate the antioxidant activity of Michelia champacca (Seed and Fruit) and Muntingia calabura (Raw Fruit) extracts. The antioxidant effect were evaluated for Radical Scavenging activity using FRAP(Benzei and Strain, 1996) and CUPRAC assay with certain modifications(Apak et al., 2004). The Chloroform extracts of Michelia champacca seed exhibited Highest Radical Scavenging Effect with 88.9% at 100g/ml.The Chloroform extract of Michelia champacca fruit exhibited significant Antioxidant activity with Scavenging effect of 80% and the raw fruits of Muntingia calabura exhibited a Radical Scavenging Effect of 70% at the same concentration. Total phenolic content of the extracts of Michelia champacca and Muntingia calabura were determined by Follins Ciocalteau method (Demray et al.,2009) with certain modifications. Positive correlations were found between Total Phenolic Content of the extracts and Antioxidant activity. The Phytochemical screening suggests that phenols and flavonoids of these extracts might provide a considerable Antioxidant potential. Addition of Michelia champacca and Muntingia calabura in food will increase the Antioxidant content and may have a potential as a natural Antioxidant. Keywords: Michelia champacca, Muntingia calabura, Antioxidant activity, Total phenol content. INTRODUCTION An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation is a chemical reaction involving the loss of electrons which can produce free radicals.
    [Show full text]
  • Material and Characterization of New Cellulosic Fibers from Muntingia
    International Journal of Applied Research 2017; 3(7): 726-730 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Material and characterization of new cellulosic fibers Impact Factor: 5.2 IJAR 2017; 3(7): 726-730 from Muntingia calabura stem www.allresearchjournal.com Received: 08-05-2017 Accepted: 10-06-2017 K Savitha and Dr. S Grace Annapoorani K Savitha Abstract PhD Research Scholar, Department of Textiles and In line with the rising environmental concerns, the synthetic fibres are replaced with the natural fibres Apparel Design, Bharathiar in the recent past. Stem fibre from Muntingia calabura species is extracted using water retting method University, Coimbatore, Tamil and its physico-chemical properties are investigated for the purpose of this study. The tensile strength Nadu, India of the fibre 416-872Mpa, cellulose content 68.51%, density 1.351g/cc, crystallinity index 47% properties were identified in the Muntingia calabura fiber is one of the good natural fiber that can be Dr. S Grace Annapoorani used as reinforced nonwoven materials different application. Associate Professor, Department of Textiles and Keywords: Muntingia Calabura, Nonwoven, Scanning electron microscopy, Thermogravimetric Apparel Design, Bharathiar analysis, X-ray diffraction University, Coimbatore, Tamil Nadu, India 1. Introduction [1] Natural cellulose fibres have gained significant importance and usage since decades. More than 1000 plant types bear fibres. Plants are made up of huge number of cells. A cell is called a fibre when its length is more than the width.[2] Chemical composition of natural fibres plays an important role in its differentiation from being classified as plant, animal or mineral fibres base on the origin.
    [Show full text]
  • Muntingia Calabura) Leaf
    Nguyen Phuoc Minh et al /J. Pharm. Sci. & Res. Vol. 11(4), 2019, 1451-1454 Different Parameters of Herbal Tea Production from Straw Berry (Muntingia calabura) Leaf Nguyen Phuoc Minh1,*, Nguyen Phu Thuong Nhan2, Nguyen Ngoc Anh Khoa3, Nguyen Ngoc Thao4, Nguyen Thi Tram5, Vo Phu Sang6 1Faculty of Chemical Engineering and Food Technology, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam 2NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam 3Can Tho University, Can Tho City, Vietnam 4Vinh Long Education Technology, Vinh Long Province, Vietnam 5Ho Chi Minh University of Technology, Ho Chi Minh City, Vietnam 6Kien Giang University, Kien Giang Province, Vietnam Abstract. Muntingia calabura is an underexploited fruit in South of Vietnam. Muntingia calabura L is a fast growing medicinal plant, attracts fruit eating birds such as flower peckers. It is a sweet fruit and mainly used as fresh fruit consumption. Muntingia calabura fruit is rich in antioxidant polyphenol and possess significant antioxidant activity, is an important and interesting finding. Straw berry leaves (Muntingia calabura) contain antioxidants that generally form by phenolic or pholifenols, the sinamat acid derivatives, flavonoids, tocopherols, coumarin and polifungsional acids. Flavonoids that have an antioxidant activity consist of flavonol, flavanon, flavones, isoflavones, catechins and kalkon. There is limited study mentioning to processing of this phytochemical leaf. Therefore we explored a herbal tea production from this leaf by focusing on the effect of different parameters such as the effect of blanching temperature and time; heat pump drying temperature and storage condition to vitamin C (mg/100g), flavonoid (mg/g) and sensory score of the dried Muntingia calabura leaf tea.
    [Show full text]