Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules catalysts Review Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules Donghyeon Kim, Jaeheon Lee and Junhyeok Seo * Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; [email protected] (D.K.); [email protected] (J.L.) * Correspondence: [email protected] Abstract: The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts. Keywords: molybdenum; metalloenzymes; FDH; CODH; nitrogenase; homogeneous; heterogeneous electrocatalysts; HER; OER Citation: Kim, D.; Lee, J.; Seo, J. 1. Introduction Molybdenum-Containing Fixation of atmospheric nitrogen to ammonia has been promoted by the Haber–Bosch Metalloenzymes and Synthetic process, and the capacitated mass production of foods accelerated the increase of the world Catalysts for Conversion of Small population [1,2]. The rapid growth of fossil fuel-based industry unavoidably increased Molecules. Catalysts 2021, 11, 217. atmospheric CO2, and resultantly aggravated the global warming and climate crisis. To https://doi.org/10.3390/ suggest solutions for those anthropogenic issues and mitigate the current environmental catal11020217 problems, scientific progress to convert fossil fuel-based energy systems toward sustainable ways is keenly desired along with other social and economic efforts [3]. In the line of Academic Editor: Carla D. Nunes scientific cognition, we review catalysts for energy conversion reactions including small Received: 2 January 2021 molecules such as CO ,N ,H , and O as reactants or products. Numerous catalysts Accepted: 3 February 2021 2 2 2 2 Published: 6 February 2021 have been developed in recent decades owing to the high interest in energy conversion reactions [4–8]. Mo ion is found to be an essential component in biological catalysis [9], as Publisher’s Note: MDPI stays neutral well as a very promising metal candidate among Earth-abundant metals for applications to with regard to jurisdictional claims in electrocatalysts and photocatalysts [4,10,11]. Herein, we review versatile utilization of Mo published maps and institutional affil- ions in natural and synthetic catalysts. iations. Mo-containing homogeneous catalysts utilize both low- and high-valent Mo ions, whereas metalloenzymes and their model complexes have high-valent Mo centers. Except for FeMo-nitrogenase [12], Mo-enzyme active sites always use dithiolene ligation of the molybdopterin (MPT) moiety to stabilize a Mo(IV/VI) ion during the redox reaction and to assist electron transfer between metal and ligand [13]. Moreover, the chalcogenide Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. ligand and nearby amino acid play essential roles to determine the selective reactivity This article is an open access article of Mo active sites. Although enzyme mechanisms remain unclear despite significant distributed under the terms and interests, ligand identity and coordination structures seem to be critical factors to deter- conditions of the Creative Commons mine catalytic activity. We can propose synthetic routes for the design of new Mo-based Attribution (CC BY) license (https:// catalysts from comparing structures, properties, and reactivities of metalloenzymes and creativecommons.org/licenses/by/ artificial catalysts [14]. Although relatively less studied, Mo-clusters have shown promising 4.0/). electrocatalytic activities due to their intermediate behaviors between metal-coordination Catalysts 2021, 11, 217. https://doi.org/10.3390/catal11020217 https://www.mdpi.com/journal/catalysts Catalysts 2021, 11, x FOR PEER REVIEW 2 of 35 Catalysts 2021, 11, 217 2 of 34 from comparing structures, properties, and reactivities of metalloenzymes and artificial catalysts [14]. Although relatively less studied, Mo-clusters have shown promising elec- trocatalyticcomplexes activities and nanoparticle due to catalyststheir interm [15].ediate In the behaviors perspective betwee of developingn metal-coordination efficient elec- complexestrocatalysts, and Mo-nanomaterials, nanoparticle catalysts which [15]. have In the shown perspective remarkable of developing electrocatalytic efficient activities, elec- trocatalysts,should be considered Mo-nanomaterials, together. Preparationwhich have methodsshown remarkable of Mo-nanomaterials electrocatalytic determine activities, their shouldcatalytic be considered activities, and together. proximal Preparation atoms and methods electronic of Mo-nanomaterials conditions around determine Mo ions their are catalyticclosely relatedactivities, to reactivitiesand proximal of surficial atoms Moand ions electronic [16,17]. conditions around Mo ions are closely related to reactivities of surficial Mo ions [16,17]. 2. CO2 Electrocatalysts 2. CO2Considering Electrocatalysts current energy systems, a drastic diminution of fossil fuel consumption seemsConsidering unrealistic. current However, energy continuous systems, researcha drastic for diminution recycling of anthropogenic fossil fuel consumption CO2 will be seemsable tounrealistic. provide feasible However, solutions continuous to current research energy for recycling and climate anthropogenic issues. Among CO2 will various be ableCO 2totransformation provide feasible methods, solutions electrochemical to current energy conversion and climate of CO2 mayissues. be anAmong attractive various way to be conjugated with solar/electric energy conversion reactions [18]. Mo-enzymes of the CO2 transformation methods, electrochemical conversion of CO2 may be an attractive way toformate be conjugated dehydrogenases with solar/electric [19] (Mo-FDH) energy and conversion the carbon reactions monoxide [18]. dehydrogenasesMo-enzymes of the [20 ] formate(MoCu-CODH) dehydrogenases are themost [19] (Mo-FDH) efficient CO and2-catalysts the carbon on Earth, monoxide and theirdehydrogenases synthetic models [20] are known, albeit short of the enzyme activity [21]. Moreover, many homogeneous and (MoCu-CODH) are the most efficient CO2-catalysts on Earth, and their synthetic models heterogeneous catalysts have been developed for CO conversion reactions. are known, albeit short of the enzyme activity [21]. Moreover,2 many homogeneous and heterogeneous catalysts have been developed for CO2 conversion reactions. 2.1. Metalloenzymes with CO2 Reactivity 2.1.1. Formate Dehydrogenases 2.1. Metalloenzymes with CO2 Reactivity Formate dehydrogenases (FDHs) is a group of metalloenzymes that catalyze a re- 2.1.1. Formate Dehydrogenases versible conversion of formate to CO2. The CO2 reactivity of the FDH active site has obtainedFormate research dehydrogenases interests because (FDHs) the is enzyme a group functions of metalloenzymes near the potential that ofcatalyze−420 mVa re- vs. versibleNHE (Normal conversion hydrogen of formate electrode) to CO scarcely2. The CO requiring2 reactivity overpotential. of the FDH It isactive known site that has the ob- re- tainedaction research rate is varied interests by bacteria. because Rhodobacterthe enzyme capsulatus functionsFDH nearfacilitates the potential oxidation of −420 of mV formate vs. −1 −1 NHEto CO (Normal2 at a rate hydrogen of 36.5 s electrode)and the scarcely reverse directionrequiring atoverpotential. a rate of 1.6 sIt is[ 22known]. Desulfovibrio that the −1 reactiondesulfuricans rate isFDH varied oxidized by bacteria. formate Rhodobacter much more capsulatus quickly FDH at 543 facilitates s and oxidation reduced of CO for-2 at −1 −1 −1 mate46.6 to s CO[232 at]. Thea rate FDH of 36.5 reactivity s and isthe directly reverse related direction to the at a active rate of site 1.6 structure, s [22]. Desulfovibrio which has a desulfuricansMo center surrounded FDH oxidized by twoformate pyranopterin-conjugated much more quickly at dithiolene 543 s−1 and ligand, reduced a chalcogenide CO2 at 46.6 s−(hydroxide1 [23]. The FDH or sulfide) reactivity ligand, is anddirectly SeCys related amino to acid the asactive a sixth site ligand structure, (Figure which1 ). In has addition, a Mo centeradditional surrounded roles of by adjacent two pyranopterin-conjuga amino acids such asted Arg dithiolene and His seem ligand, to be a chalcogenide important to assist(hy- droxidethe FDH or reaction sulfide) byligand, stabilizing and SeCys reaction amino intermediates. acid as a sixth ligand (Figure 1). In addition, additional roles of adjacent amino acids such as Arg and His seem to be important to assist − + − ◦0 the FDH reaction byCO stabilizing2 + 2e reaction+ H intermediates. HCOO ,E = −420 mV Figure 1. Oxidized form of the FDH active site from Escherichia coli (PDB 2IV2). Figure 1. Oxidized form of the FDH active site from Escherichia coli (PDB 2IV2). In 1997, Boyington and coworkers first reported the crystal structure of E. coli FDH [24]. Later,
Recommended publications
  • Mineralogical and Oxygen Isotopic Study of a New Ultrarefractory Inclusion in the Northwest Africa 3118 CV3 Chondrite
    Meteoritics & Planetary Science 55, Nr 10, 2184–2205 (2020) doi: 10.1111/maps.13575 Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite Yong XIONG1, Ai-Cheng ZHANG *1,2, Noriyuki KAWASAKI3, Chi MA 4, Naoya SAKAMOTO5, Jia-Ni CHEN1, Li-Xin GU6, and Hisayoshi YURIMOTO3,5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 2CAS Center for Excellence in Comparative Planetology,Hefei, China 3Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 5Isotope Imaging Laboratory, Creative Research Institution Sousei, Hokkaido University, Sapporo 001-0021, Japan 6Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China *Corresponding author. E-mail: [email protected] (Received 27 March 2020; revision accepted 09 September 2020) Abstract–Calcium-aluminum-rich inclusions (CAIs) are the first solid materials formed in the solar nebula. Among them, ultrarefractory inclusions are very rare. In this study, we report on the mineralogical features and oxygen isotopic compositions of minerals in a new ultrarefractory inclusion CAI 007 from the CV3 chondrite Northwest Africa (NWA) 3118. The CAI 007 inclusion is porous and has a layered (core–mantle–rim) texture. The core is dominant in area and mainly consists of Y-rich perovskite and Zr-rich davisite, with minor refractory metal nuggets, Zr,Sc-rich oxide minerals (calzirtite and tazheranite), and Fe-rich spinel. The calzirtite and tazheranite are closely intergrown, probably derived from a precursor phase due to thermal metamorphism on the parent body.
    [Show full text]
  • Session Lecture Poster Date Code Name Affiliation Title S36 Yoko
    Poster Session Lecture Code Name Affiliation Title Date S36 Yoko Sakata Kanazawa University S36 Tetsuro Kusamoto The University of Tokyo S36 Nobuto Yoshinari Osaka University S36 Akitaka Ito Kochi University of Technology S36 Ryo Ohtani Kumamoto University Organizer S36 Wei-Xiong ZHANG Sun Yat-Sen University S36 Kenneth Hanson Florida State University S36 Dawid Pinkowicz Jagiellonian University in Krakow Chung Yuan Christian University (from Aug. 1. S36 Tsai-Te Lu 2017, National Tsing Hua University) S36 Oral Talk A00119-AG Angela Grommet University of Cambridge Coordination Cages for the Transportation of Molecular Cargo S36 Oral Talk A00130-KH Kenneth Hanson Florida State University Harnessing Molecular Photon Upconversion Using Transition Metal Ion S36 Oral Talk A00140-WS Woon Ju Song Seoul National University De Novo Design of Artificial Metallo-Hydrolases Ruhr-Universitat Bochum & Fraunhofer Inducing Varying Efficiency in (FexNi1-x)9S8 Electrocatalysts Applied in S36 Oral Talk A00184-UA Ulf-Peter Apfel UMSICHT Hydrogen Evolution and CO2 Reduction Reactions School of Chemistry, Sun Yat-Sen University, S36 Oral Talk A00217-PL Pei-Qin Liao Metal-organic frameworks for CO2 capture and conversion Guangzhou 510275, China S36 Oral Talk A00248-TK Takashi Kitao Graduate School of Engineering, Kyoto Controlled Assemblies of Conjugated Polymers in Metal-Organic Manipulating Proton for Hydrogen Production in a Biologically Inspired S36 Oral Talk A00333-KC Kai-Ti Chu Institute of Chemistry, Academia Sinica Fe2 Electrocatalytic System S36 Oral
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001).
    [Show full text]
  • Allendeite (Sc4zr3o12) and Hexamolybdenum (Mo,Ru,Fe), Two New Minerals from an Ultrarefractory Inclusion from the Allende Meteorite
    American Mineralogist, Volume 99, pages 654–666, 2014 Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite Chi Ma*, John R. BeCkett and GeoRGe R. RossMan Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. aBstRaCt During a nanomineralogy investigation of the Allende meteorite with analytical scanning elec- tron microscopy, two new minerals were discovered; both occur as micro- to nano-crystals in an ultrarefractory inclusion, ACM-1. They are allendeite, Sc4Zr3O12, a new Sc- and Zr-rich oxide; and hexamolybdenum (Mo,Ru,Fe,Ir,Os), a Mo-dominant alloy. Allendeite is trigonal, R3, a = 9.396, c = 8.720, V = 666.7 Å3, and Z = 3, with a calculated density of 4.84 g/cm3 via the previously described structure and our observed chemistry. Hexamolybdenum is hexagonal, P63/mmc, a = 2.7506, c = 4.4318 Å, V = 29.04 Å3, and Z = 2, with a calculated density of 11.90 g/cm3 via the known structure and our observed chemistry. Allendeite is named after the Allende meteorite. The name hexamolyb- denum refers to the symmetry (primitive hexagonal) and composition (Mo-rich). The two minerals an important ultrarefractory carrier phase linking Zr-,Sc-oxides to the more common Sc-,Zr-enriched pyroxenes in Ca-Al-rich inclusions. Hexamolybdenum is part of a continuum of high-temperature al- loys in meteorites supplying a link between Os- and/or Ru-rich and Fe-rich meteoritic alloys. It may be a derivative of the former and a precursor of the latter.
    [Show full text]
  • A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters
    Title A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters Author(s) 赤木, 壮一郎 Citation 北海道大学. 博士(理学) 甲第13663号 Issue Date 2019-03-25 DOI 10.14943/doctoral.k13663 Doc URL http://hdl.handle.net/2115/77004 Type theses (doctoral) File Information Soichiro_Akagi.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters Soichiro Akagi Graduate School of Chemical Sciences and Engineering, Department of Chemical Sciences and Engineering, HOKKAIDO UNIVERSITY (2019) Table of Contents Chapter 1. General Introduction 1-1: Phosphorescent Transition Metal Complex…...………….…………………………………………………2 1-2: Zero-Magnetic-Field Splitting……………………………………………………………………………...4 1-2-1: Fundamental Theory of zfs 1-2-2: Experimental Evaluation of zfs Energies 1-2-3: zfs in the Excited Triplet States of Transition Metal Complexes 1-3: Octahedral Hexametal Cluster…………………………………………………………………………..…10 1-4: Purpose and Outline of the Thesis………………………………………..………………………………...11 1-5: References…………………………………………………………………………………………………14 Chapter 2. Experiments and Methodologies 2-1: Introduction……………………………………………………………………………………………......24 2-2: Materials and Characterization………………………………………………………………………….....24 2-3: Synthesis…………………………………………………………………………………………………..25 2– 2-3-1: Synthesis of [{Mo6X8}X6] (X = Cl) 2– 2-3-2: Synthesis of [{Mo6X8}X6] (X = Br or I) 2– 2-3-3: Synthesis of Terminal Halide Clusters: [{Mo6X8}Y6] (X, Y = Cl, Br, or I) 2– 2-3-4: Synthesis
    [Show full text]
  • Carmeltazite, Zral2ti4o11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel
    minerals Article Carmeltazite, ZrAl2Ti4O11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel William L. Griffin 1 , Sarah E. M. Gain 1,2 , Luca Bindi 3,* , Vered Toledo 4, Fernando Cámara 5 , Martin Saunders 2 and Suzanne Y. O’Reilly 1 1 ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Earth and Planetary Sciences, Macquarie University, Sydney 2109, Australia; bill.griffi[email protected] (W.L.G.); [email protected] (S.E.M.G.); [email protected] (S.Y.O.) 2 Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia; [email protected] 3 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy 4 Shefa Yamim (A.T.M.) Ltd., Netanya 4210602, Israel; [email protected] 5 Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133 Milano, Italy; [email protected] * Correspondence: luca.bindi@unifi.it; Tel.: +39-055-275-7532 Received: 26 November 2018; Accepted: 17 December 2018; Published: 19 December 2018 Abstract: The new mineral species carmeltazite, ideally ZrAl2Ti4O11, was discovered in pockets of trapped melt interstitial to, or included in, corundum xenocrysts from the Cretaceous Mt Carmel volcanics of northern Israel, associated with corundum, tistarite, anorthite, osbornite, an unnamed REE (Rare Earth Element) phase, in a Ca-Mg-Al-Si-O glass. In reflected light, carmeltazite is weakly to moderately bireflectant and weakly pleochroic from dark brown to dark green.
    [Show full text]
  • Cyanide Complexes Based on {Mo6i8}4+ and {W6I8}
    molecules Article 4+ 4+ Cyanide Complexes Based on {Mo6I8} and {W6I8} Cluster Cores Aleksei S. Pronin 1 , Spartak S. Yarovoy 1, Yakov M. Gayfulin 1,* , Aleksey A. Ryadun 1, Konstantin A. Brylev 1, Denis G. Samsonenko 1 , Ilia V. Eltsov 2 and Yuri V. Mironov 1,* 1 Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia; [email protected] (A.S.P.); [email protected] (S.S.Y.); [email protected] (A.A.R.); [email protected] (K.A.B.); [email protected] (D.G.S.) 2 Department of Natural Sciences, Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia; [email protected] * Correspondence: [email protected] (Y.M.G.); [email protected] (Y.V.M.) Academic Editor: Constantina Papatriantafyllopoulou Received: 10 November 2020; Accepted: 4 December 2020; Published: 8 December 2020 2– Abstract: Compounds based on new cyanide cluster anions [{Mo6I8}(CN)6] , 2– 2 trans-[{Mo6I8}(CN)4(MeO)2] and trans-[{W6I8}(CN)2(MeO)4] − were synthesized using mechanochemical or solvothermal synthesis. The crystal and electronic structures as well as spectroscopic properties of the anions were investigated. It was found that the new compounds exhibit red luminescence upon excitation by UV light in the solid state and solutions, as other cluster 4+ 4+ complexes based on {Mo6I8} and {W6I8} cores do. The compounds can be recrystallized from aqueous methanol solutions; besides this, it was shown using NMR and UV-Vis spectroscopy that anions did not undergo hydrolysis in the solutions for a long time.
    [Show full text]
  • Allendeite and Hexamolybdenum: Two New Ultra-Refractory Minerals in Allende and Two Missing Links C
    40th Lunar and Planetary Science Conference (2009) 1402.pdf Allendeite and Hexamolybdenum: Two New Ultra-Refractory Minerals in Allende and Two Missing Links C. Ma*, J.R. Beckett, and G.R. Rossman; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, *[email protected]. Introduction: During our nano-mineralogy inves- tigation of the Allende meteorite, we discovered two new minerals that occur as micro- to nano-crystals in refractory inclusions: Allendeite, Sc4Zr3O12, a new Sc- and Zr-rich oxide; and hexamolybdenum, (Mo,Ru,Fe), a Mo-dominant alloy. Allendeite, which may be an important ultra-refractory carrier linking Zr-, Sc- ox- ides and the more common Sc-, Zr-enriched clinopy- roxenes (Cpx) in CAIs, hosts perovskite (Pv), spinel (Sp), Os-Ir-W-Mo alloys, and hexamolybdenum. The observation of two structurally and chemically distinct highly refractory, low-Pt alloy minerals not associated with Fe-Ni alloys provides the first direct physical evidence for at least two separate carriers of the highly Fig. 1. Backscattered electron (BSE) image of the refractory metals in CAIs. Hexamolybdenum links Os- refractory inclusion containing allendeite and hex- rich and Pt-rich meteoritic alloys and may be a precur- amolybdenum. sor of the latter. Both new minerals have been ap- proved by the Commission on New Minerals, Nomen- clature and Classification of the International Minera- logical Association (IMA 2007-027, 029). Occurrence, Chemistry and Crystallography: Allendeite and hexamolybdenum occur in a partially altered refractory inclusion ~70 μm x 120 μm in sec- tion USNM 7554 (Fig. 1). Fig. 2 shows a single 15x25 μm crystal (revealed by electron backscatter diffraction (EBSD) orientation mapping) of allendeite with in- cluded Pv, Os-Ir-Mo-W alloy, and Sc-stabilized taz- heranite (Taz; cubic zirconia).
    [Show full text]
  • Mccoy, T. J. Mineralogical Evolution of Meteorites. Elements
    Mineralogical Evolution of Meteorites Halite crystals from the Monahans chondrite contain fl uid inclusions, which indicate Timothy J. McCoy* signifi cant water–rock interactions in the 1811-5209/10/0006-0019$2.50 DOI: 10.2113/gselements.6.1.19 meteorite’s parent body. Image width ~5 mm. COURTESY OF M. he approximately 250 mineral species found in meteorites record the ZOLENSKY AND R. BODNAR earliest stages of the birth of our solar system. Refractory minerals but eventually transformed some that formed during the violent deaths of other stars and during conden- T asteroids into molten worlds that sation of our own solar nebula mixed with a wide range of silicates, sulfi des, formed crusts, mantles, and cores and metals to form the most primitive chondritic meteorites. Subsequent reminiscent of our own planet. It aqueous alteration, thermal metamorphism, and shock metamorphism further is this history—from the earliest beginnings to the melting of diversifi ed the minerals found in meteorites. Asteroidal melting at fi rst planets—that we explore in this increased and then dramatically decreased mineralogical diversity, before a article. new phase of igneous differentiation that presaged the processes that would occur in terrestrial planets. THE STELLAR CAULDRON Earth’s mineralogical evolution KEYWORDS: mineral evolution, meteorites, asteroids, metamorphism, began not in the heat of an early differentiation, shock molten planet but in the blast furnace of stars that predated our FRAGMENTS FROM THE BEGINNING solar system. More than 4.6 billion years ago, presolar As Earth evolved over the last 4.5 billion years, its miner- grains formed when temperatures in the expanding enve- alogy changed.
    [Show full text]
  • 2- Cluster Is Biologically Secure and Has Anti-Rotavirus Activity in Vitro
    molecules Article 2− The [Mo6Cl14] Cluster is Biologically Secure and Has Anti-Rotavirus Activity In Vitro Edgardo Rojas-Mancilla 1, Alexis Oyarce 2, Viviana Verdugo 2, Cesar Morales-Verdejo 3 , Cesar Echeverria 3, Felipe Velásquez 4, Jonas Chnaiderman 4, Fernando Valiente-Echeverría 4 and Rodrigo Ramirez-Tagle 5,* 1 Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] 2 Escuela de Tecnología Médica, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] (A.O.); [email protected] (V.V.) 3 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] (C.M.-V.); [email protected] (C.E.) 4 Instituto de Ciencias Biomédicas, Programa de Virología, Universidad de Chile, Avda, Independencia 1027, Independencia 8380453, Chile; [email protected] (F.V.); [email protected] (J.C.); [email protected] (F.-V.E.) 5 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O Higgins, Avenida Viel 1497, Santiago 8370993, Chile * Correspondence: [email protected]; Tel.: +56-2-2477-2256 Received: 9 May 2017; Accepted: 29 June 2017; Published: 5 July 2017 2− Abstract: The molybdenum cluster [Mo6Cl14] is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro.
    [Show full text]
  • CHONDRITE NORTHWEST AFRICA 12590. Ksenia A. Konovalova1, Pavel Yu
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1961.pdf MINERALOGY OF THE COMPLEX REFRACTORY METAL NUGGETS IN B1 TYPE CAI FROM CV3- CHONDRITE NORTHWEST AFRICA 12590. Ksenia A. Konovalova1, Pavel Yu. Plechov1, Konstantin D. Litasov1,2, Vasily D. Shcherbakov3, Sergey P. Vasiliev1, 1Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 119071, Russia ([email protected]), 2Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow, 108840, Russia, 3Department of Geology, Moscow State University, Moscow, 119992, Russia Introduction: Ca-Al-inclusions are the oldest ruthenium. However, to emphasize specific objects in the solar system, which contain minerals, composition and type of origin “hexa-” may be such as spinel, melilite, hibonite, and perovskite, important. Pure Molybdenum and Iridium (also Fe and presumably condensed from a cooling gas of the solar Ni) have cubic crystal structure, however, with an nebula [1]. They often contain fremdlinge and refractory metal nuggets (RMN), that are enriched by siderophile elements such as PGE, Mo, and W [2-3]. Three major groups of hypotheses have been proposed to explain the origin of RMN: (1) condensation from the solar nebula or stellar environments, which is supported by data from type A CAI and studies of presolar grains [4-7]; (2) precipitation from CAI melt, which is very likely for type B CAI [8-9], or (3) secondary processes in the parent bodies or nebulae, which may be applicable for PMNs in fremdlinge and RMN of complex composition Fig. 1. BSE images of type B1 CAI from NWA 12590 [10-11]. CV3 chondrite with abundant refractory metal nuggets Here we report the detailed data on RMNs from B1 (a) and their examples (b-c).
    [Show full text]
  • NANOCRYSTALS of NATIVE MOLYBDENUM, IRON and TITANIUM WITHIN IMPACT GLASSES of LUNAR REGOLITH Andrey V
    14 New Data on Minerals. 2014. Vol. 49 NANOCRYSTALS OF NATIVE MOLYBDENUM, IRON AND TITANIUM WITHIN IMPACT GLASSES OF LUNAR REGOLITH Andrey V. Mokhov, Tatyana A. Gornostaeva, Pavel M. Kartashov, Enver E. Asadulin, Oleg A. Bogatikov Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Moscow, [email protected] This paper discusses the results of study of the impact glass fragments from the Mare Fecunditatis and Mare Crisium regolith samples brought on the Earth by the Soviet Automatic stations Luna-16 and Luna-24. Nanoinclusions of native molybdenum, iron and titanium were found in the samples with scanning and trans- mission electron microscopy (SEM, TEM). It is shown that these inclusions are single crystals. A natural high pressure native w titanium was identified for the first time. The composition and structure of glass matrix of the regolith samples indicates its extreme micro and nano heterogeneity. The probable formation mechanisms of the studied nanocrystals are discussed. 3 tables, 10 figures, 26 references. Keywords: native molybdenum, native iron, native w titanium, nanophases, single crystals, impact glasses, lunar regolith, Mare Fecunditatis, Mare Crisium. The main goal of the investigation of mi- Therefore, the aim of this study is investi- ne rals from lunar regolith (average fine lunar gation of structure and formation mecha- matter) was detetermination of the composi- nisms of metal inclusions in lunar glasses. tion and structure of microphases reflecting specific character of mineral-forming proces- Analytical techniques ses at high temperature and pressure gradient in oxygen-free and anhydrous atmosphere. Glass fragments of the regolith samples The impact events determining chemi cal and from the Mare Fecunditatis and Mare physical properties of lunar regolith made a Crisium brought to the Earth by AS Luna-16 substantial contribution to the formation of and Luna-24 were examined with transmis- these phases.
    [Show full text]