Cyanide Complexes Based on {Mo6i8}4+ and {W6I8}

Total Page:16

File Type:pdf, Size:1020Kb

Cyanide Complexes Based on {Mo6i8}4+ and {W6I8} molecules Article 4+ 4+ Cyanide Complexes Based on {Mo6I8} and {W6I8} Cluster Cores Aleksei S. Pronin 1 , Spartak S. Yarovoy 1, Yakov M. Gayfulin 1,* , Aleksey A. Ryadun 1, Konstantin A. Brylev 1, Denis G. Samsonenko 1 , Ilia V. Eltsov 2 and Yuri V. Mironov 1,* 1 Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia; [email protected] (A.S.P.); [email protected] (S.S.Y.); [email protected] (A.A.R.); [email protected] (K.A.B.); [email protected] (D.G.S.) 2 Department of Natural Sciences, Novosibirsk State University, 2, Pirogova str., 630090 Novosibirsk, Russia; [email protected] * Correspondence: [email protected] (Y.M.G.); [email protected] (Y.V.M.) Academic Editor: Constantina Papatriantafyllopoulou Received: 10 November 2020; Accepted: 4 December 2020; Published: 8 December 2020 2– Abstract: Compounds based on new cyanide cluster anions [{Mo6I8}(CN)6] , 2– 2 trans-[{Mo6I8}(CN)4(MeO)2] and trans-[{W6I8}(CN)2(MeO)4] − were synthesized using mechanochemical or solvothermal synthesis. The crystal and electronic structures as well as spectroscopic properties of the anions were investigated. It was found that the new compounds exhibit red luminescence upon excitation by UV light in the solid state and solutions, as other cluster 4+ 4+ complexes based on {Mo6I8} and {W6I8} cores do. The compounds can be recrystallized from aqueous methanol solutions; besides this, it was shown using NMR and UV-Vis spectroscopy that anions did not undergo hydrolysis in the solutions for a long time. These facts indicate that hydrolytic stabilization of {Mo6I8} and {W6I8} cluster cores can be achieved by coordination of cyanide ligands. Keywords: cluster compounds; molybdenum; tungsten; cyanide ligand; crystal structure; luminescence; hydrolytic stability 1. Introduction 4+ Chemistry and applications of compounds based on octahedral cluster cores {M6X8} (M = Mo or W; X = Cl, Br or I) have been studied for several decades due to a number of interesting physicochemical properties, including bright luminescence in the red and near infrared regions [1–7] and reversible redox transformations [8,9]. High luminescence quantum yields and lifetimes in combination with tunability of chemical properties by changing ligand environments made it possible to create a number of promising luminescent and photocatalytic materials based on these clusters [10–15]. The phosphorescence of clusters is also associated with the efficient singlet oxygen 4+ production [16,17]. Therefore, compounds and materials based on {M6X8} clusters can potentially be applied in photodynamic therapy [18–22], antibacterial and antiviral applications [23–25]. Besides this, luminescence of clusters was successfully used in bioimaging [18,26,27]. An interesting and less studied area is the use of luminescent octahedral cluster complexes of molybdenum and tungsten as building blocks for the synthesis of functional coordination polymers. High symmetry and large volume of the cluster complexes make them convenient for the design of crystalline coordination polymers and metal-organic frameworks, while the spectroscopic and redox features of the clusters can be used in order to impart the desired functionality to the solid material. The majority of coordination polymers based on octahedral metal cluster complexes known to date have been obtained based on the cyanide-coordinated clusters [28–30]. The presence of ambidentate apical cyanide ligands makes it possible to coordinate transition and post-transition metal cations and to obtain Molecules 2020, 25, 5796; doi:10.3390/molecules25245796 www.mdpi.com/journal/molecules Molecules 2020, 25, 5796 2 of 17 crystalline coordination polymers by self-assembly. Using {M6X8}-type cyanoclusters is interesting for obtaining new luminescent coordination polymers. For now, the structure of only one cyanide cluster 4+ 2 based on an {Mo6X8} core has been described in the literature, namely [{Mo6Br8}(CN)6] − [31,32], while the tungsten cyanide clusters of that type are unknown. Therefore, further progress in this field requires the development of methods for the synthesis of cyanide molybdenum and tungsten halide clusters. In this work, we report on the synthesis of the first cyanide cluster anions based 4+ 4+ 2 2 on {Mo6I8} and {W6I8} cores, namely [{Mo6I8}(CN)6] −, trans-[{Mo6I8}(CN)4(MeO)2] − and 2 trans-[{W6I8}(CN)2(MeO)4] −. Their crystal structures and spectroscopic properties in the solid state and solutions were investigated together with calculated geometry and electronic structures. To obtain new compounds, two different ways of synthesis were tested, namely, substitution of terminal iodide ligands in solvothermal conditions and mechanochemical depolymerization of Mo6I12. Each way was found to be usable for obtaining target compounds in preparative amounts. The new anions have shown an outstanding stability in aqueous solutions, demonstrating the stabilizing influence of terminal cyanides. 2. Results and Discussion 2.1. Synthesis Until now, only one structure of a cyanide cluster based on halide octahedral molybdenum core 2 has been reported, namely [Mo6Br8(CN)6] − [31]. It was shown that this complex formed polymeric compounds with transition metal cations [32]. For octahedral tungsten halides, cyanide compounds 4+ 4+ have not been described. At the same time, complexes based on {Mo6I8} and {W6I8} cluster cores are usually very bright luminophores, which makes them interesting as components of supramolecular systems and coordination polymers. In this work, two approaches were realized for the preparation of cyanide cluster complexes 4+ 4+ based on {Mo6I8} and {W6I8} cores (Scheme1). The first approach is depolymerization of M 6I12 compounds by mechanochemical activation. The reaction between polymeric Mo6I12 and NaCN in the ball mill led to the formation of water-soluble products. After filtration of the solution, addition of CsCl and evaporation, an orange microcrystalline powder was isolated, which was identified as Cs Na [{Mo I }(CN) ] 2H O(1) based on elemental analysis and EDS. The reaction of an aqueous 1.3 0.7 6 8 6 · 2 solution of this compound with an aqueous solution of Bu4NI led to the precipitation of the compound (Bu N) [{Mo I }(CN) ] 0.7H O(2), which is soluble in polar organic solvents and can be easily 4 2 6 8 6 · 2 recrystallized from CH3CN/H2O or MeOH/H2O mixtures. Recrystallization from dimethyl sulfoxide (DMSO) led to removal of the solvate H2O molecules and precipitation of compound 3. The yield of compound 2 is about 50% with respect to the initially taken Mo6I12, which makes it possible to obtain it in preparative amounts. It was also shown that this compound can be obtained with a very low yield in a solvothermal reaction between the salt (Bu4N)2[{Mo6I8}I6] and NaCN in an aqueous solution. The reaction gave an insoluble brown precipitate and a cloudy yellow solution, from which, after filtration and evaporation, several crystals of compound 2 were isolated. An attempt to obtain 2 a tungsten analog of the [{Mo6I8}(CN)6] − anion by mechanochemical activation of W6I12 in the presence of NaCN was unsuccessful: the resulting brown-black product was unstable to hydrolysis. It is interesting to note that soluble trinuclear clusters of both molybdenum and tungsten, namely (Et4N)2[W3S7Br6], (Et4N)2[W3Se7Br6], and [Mo3Se7(dtc)3]dtc (dtc = diethyldithiocarbamate), were synthesized earlier using mechanochemical activation of polymeric solids W3S7Br4,W3Se7Br4 and Mo3Se7Br4, respectively [33]. Molecules 2020, 25, 5796 3 of 17 Molecules 2020, 25, x 3 of 19 Scheme 1. The synthetic ways of obtaining the compounds 1–5. Scheme 1. The synthetic ways of obtaining the compounds 1–5. The second approach is the substitution of the terminal iodide ligands in the discrete cluster The second approach2 is the substitution2 of the terminal iodide ligands in the discrete cluster anions [{Mo6I8}I6] − and [{W6I8}I6] −. These reactions were carried out under solvothermal conditions anions [{Mo6I8}I6]2− and [{W6I8}I6]2−. These reactions were carried out under solvothermal conditions in methanol. In this case, orange-red solutions were formed, which, after cooling, were filtered from in methanol. In this case, orange-red solutions were formed, which, after cooling, were filtered from an excess of NaCN, mixed with an equal volume of H2O and evaporated. Addition of H2O was an excess of NaCN, mixed with an equal volume of H2O and evaporated. Addition of H2O was found found to be necessary in order to prevent the formation of oil after concentration of solutions in pure to be necessary in order to prevent the formation of oil after concentration of solutions in pure methanol. The obtained red crystalline solids were isolated and investigated. The use of methanol methanol. The obtained red crystalline solids were isolated and investigated. The use of methanol in in solvothermal synthesis made it possible to avoid the problem of hydrolysis of clusters at elevated solvothermal synthesis made it possible to avoid the problem of hydrolysis of clusters at elevated temperatures. However, in this case, the methylate anion competes with cyanide, so that compounds temperatures. However, in this case, the methylate anion competes2 with cyanide, so that compounds2 based on apically heteroleptic anions trans-[Mo6I8(CN)4(MeO)2] − and trans-[W6I8(CN)2(MeO)4] − based on apically heteroleptic anions trans-[Mo6I8(CN)4(MeO)2]2− and trans-[W6I8(CN)2(MeO)4]2− were were obtained in high yields. The reaction products demonstrated phase purity (Figure1), and the obtained in high yields. The13 reaction products demonstrated phase purity (Figure 1), and the study study of their solutions by C-NMR in d6-DMSO did not reveal the presence of geometric isomers or of their solutions by 13C-NMR in d6-DMSO did not reveal the presence of geometric isomers or clusters with a different ratio of CN− and MeO− anions (Figure2). Note that hexamolybdenum cluster clusters with a different ratio of CN− and MeO− anions (Figure 2).
Recommended publications
  • Mineralogical and Oxygen Isotopic Study of a New Ultrarefractory Inclusion in the Northwest Africa 3118 CV3 Chondrite
    Meteoritics & Planetary Science 55, Nr 10, 2184–2205 (2020) doi: 10.1111/maps.13575 Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite Yong XIONG1, Ai-Cheng ZHANG *1,2, Noriyuki KAWASAKI3, Chi MA 4, Naoya SAKAMOTO5, Jia-Ni CHEN1, Li-Xin GU6, and Hisayoshi YURIMOTO3,5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 2CAS Center for Excellence in Comparative Planetology,Hefei, China 3Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 5Isotope Imaging Laboratory, Creative Research Institution Sousei, Hokkaido University, Sapporo 001-0021, Japan 6Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China *Corresponding author. E-mail: [email protected] (Received 27 March 2020; revision accepted 09 September 2020) Abstract–Calcium-aluminum-rich inclusions (CAIs) are the first solid materials formed in the solar nebula. Among them, ultrarefractory inclusions are very rare. In this study, we report on the mineralogical features and oxygen isotopic compositions of minerals in a new ultrarefractory inclusion CAI 007 from the CV3 chondrite Northwest Africa (NWA) 3118. The CAI 007 inclusion is porous and has a layered (core–mantle–rim) texture. The core is dominant in area and mainly consists of Y-rich perovskite and Zr-rich davisite, with minor refractory metal nuggets, Zr,Sc-rich oxide minerals (calzirtite and tazheranite), and Fe-rich spinel. The calzirtite and tazheranite are closely intergrown, probably derived from a precursor phase due to thermal metamorphism on the parent body.
    [Show full text]
  • Session Lecture Poster Date Code Name Affiliation Title S36 Yoko
    Poster Session Lecture Code Name Affiliation Title Date S36 Yoko Sakata Kanazawa University S36 Tetsuro Kusamoto The University of Tokyo S36 Nobuto Yoshinari Osaka University S36 Akitaka Ito Kochi University of Technology S36 Ryo Ohtani Kumamoto University Organizer S36 Wei-Xiong ZHANG Sun Yat-Sen University S36 Kenneth Hanson Florida State University S36 Dawid Pinkowicz Jagiellonian University in Krakow Chung Yuan Christian University (from Aug. 1. S36 Tsai-Te Lu 2017, National Tsing Hua University) S36 Oral Talk A00119-AG Angela Grommet University of Cambridge Coordination Cages for the Transportation of Molecular Cargo S36 Oral Talk A00130-KH Kenneth Hanson Florida State University Harnessing Molecular Photon Upconversion Using Transition Metal Ion S36 Oral Talk A00140-WS Woon Ju Song Seoul National University De Novo Design of Artificial Metallo-Hydrolases Ruhr-Universitat Bochum & Fraunhofer Inducing Varying Efficiency in (FexNi1-x)9S8 Electrocatalysts Applied in S36 Oral Talk A00184-UA Ulf-Peter Apfel UMSICHT Hydrogen Evolution and CO2 Reduction Reactions School of Chemistry, Sun Yat-Sen University, S36 Oral Talk A00217-PL Pei-Qin Liao Metal-organic frameworks for CO2 capture and conversion Guangzhou 510275, China S36 Oral Talk A00248-TK Takashi Kitao Graduate School of Engineering, Kyoto Controlled Assemblies of Conjugated Polymers in Metal-Organic Manipulating Proton for Hydrogen Production in a Biologically Inspired S36 Oral Talk A00333-KC Kai-Ti Chu Institute of Chemistry, Academia Sinica Fe2 Electrocatalytic System S36 Oral
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001).
    [Show full text]
  • Allendeite (Sc4zr3o12) and Hexamolybdenum (Mo,Ru,Fe), Two New Minerals from an Ultrarefractory Inclusion from the Allende Meteorite
    American Mineralogist, Volume 99, pages 654–666, 2014 Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite Chi Ma*, John R. BeCkett and GeoRGe R. RossMan Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. aBstRaCt During a nanomineralogy investigation of the Allende meteorite with analytical scanning elec- tron microscopy, two new minerals were discovered; both occur as micro- to nano-crystals in an ultrarefractory inclusion, ACM-1. They are allendeite, Sc4Zr3O12, a new Sc- and Zr-rich oxide; and hexamolybdenum (Mo,Ru,Fe,Ir,Os), a Mo-dominant alloy. Allendeite is trigonal, R3, a = 9.396, c = 8.720, V = 666.7 Å3, and Z = 3, with a calculated density of 4.84 g/cm3 via the previously described structure and our observed chemistry. Hexamolybdenum is hexagonal, P63/mmc, a = 2.7506, c = 4.4318 Å, V = 29.04 Å3, and Z = 2, with a calculated density of 11.90 g/cm3 via the known structure and our observed chemistry. Allendeite is named after the Allende meteorite. The name hexamolyb- denum refers to the symmetry (primitive hexagonal) and composition (Mo-rich). The two minerals an important ultrarefractory carrier phase linking Zr-,Sc-oxides to the more common Sc-,Zr-enriched pyroxenes in Ca-Al-rich inclusions. Hexamolybdenum is part of a continuum of high-temperature al- loys in meteorites supplying a link between Os- and/or Ru-rich and Fe-rich meteoritic alloys. It may be a derivative of the former and a precursor of the latter.
    [Show full text]
  • A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters
    Title A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters Author(s) 赤木, 壮一郎 Citation 北海道大学. 博士(理学) 甲第13663号 Issue Date 2019-03-25 DOI 10.14943/doctoral.k13663 Doc URL http://hdl.handle.net/2115/77004 Type theses (doctoral) File Information Soichiro_Akagi.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A Study on the Excited Triplet States of Octahedral Hexamolybdenum(II) Clusters Soichiro Akagi Graduate School of Chemical Sciences and Engineering, Department of Chemical Sciences and Engineering, HOKKAIDO UNIVERSITY (2019) Table of Contents Chapter 1. General Introduction 1-1: Phosphorescent Transition Metal Complex…...………….…………………………………………………2 1-2: Zero-Magnetic-Field Splitting……………………………………………………………………………...4 1-2-1: Fundamental Theory of zfs 1-2-2: Experimental Evaluation of zfs Energies 1-2-3: zfs in the Excited Triplet States of Transition Metal Complexes 1-3: Octahedral Hexametal Cluster…………………………………………………………………………..…10 1-4: Purpose and Outline of the Thesis………………………………………..………………………………...11 1-5: References…………………………………………………………………………………………………14 Chapter 2. Experiments and Methodologies 2-1: Introduction……………………………………………………………………………………………......24 2-2: Materials and Characterization………………………………………………………………………….....24 2-3: Synthesis…………………………………………………………………………………………………..25 2– 2-3-1: Synthesis of [{Mo6X8}X6] (X = Cl) 2– 2-3-2: Synthesis of [{Mo6X8}X6] (X = Br or I) 2– 2-3-3: Synthesis of Terminal Halide Clusters: [{Mo6X8}Y6] (X, Y = Cl, Br, or I) 2– 2-3-4: Synthesis
    [Show full text]
  • Carmeltazite, Zral2ti4o11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel
    minerals Article Carmeltazite, ZrAl2Ti4O11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel William L. Griffin 1 , Sarah E. M. Gain 1,2 , Luca Bindi 3,* , Vered Toledo 4, Fernando Cámara 5 , Martin Saunders 2 and Suzanne Y. O’Reilly 1 1 ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Earth and Planetary Sciences, Macquarie University, Sydney 2109, Australia; bill.griffi[email protected] (W.L.G.); [email protected] (S.E.M.G.); [email protected] (S.Y.O.) 2 Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia; [email protected] 3 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy 4 Shefa Yamim (A.T.M.) Ltd., Netanya 4210602, Israel; [email protected] 5 Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133 Milano, Italy; [email protected] * Correspondence: luca.bindi@unifi.it; Tel.: +39-055-275-7532 Received: 26 November 2018; Accepted: 17 December 2018; Published: 19 December 2018 Abstract: The new mineral species carmeltazite, ideally ZrAl2Ti4O11, was discovered in pockets of trapped melt interstitial to, or included in, corundum xenocrysts from the Cretaceous Mt Carmel volcanics of northern Israel, associated with corundum, tistarite, anorthite, osbornite, an unnamed REE (Rare Earth Element) phase, in a Ca-Mg-Al-Si-O glass. In reflected light, carmeltazite is weakly to moderately bireflectant and weakly pleochroic from dark brown to dark green.
    [Show full text]
  • Allendeite and Hexamolybdenum: Two New Ultra-Refractory Minerals in Allende and Two Missing Links C
    40th Lunar and Planetary Science Conference (2009) 1402.pdf Allendeite and Hexamolybdenum: Two New Ultra-Refractory Minerals in Allende and Two Missing Links C. Ma*, J.R. Beckett, and G.R. Rossman; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, *[email protected]. Introduction: During our nano-mineralogy inves- tigation of the Allende meteorite, we discovered two new minerals that occur as micro- to nano-crystals in refractory inclusions: Allendeite, Sc4Zr3O12, a new Sc- and Zr-rich oxide; and hexamolybdenum, (Mo,Ru,Fe), a Mo-dominant alloy. Allendeite, which may be an important ultra-refractory carrier linking Zr-, Sc- ox- ides and the more common Sc-, Zr-enriched clinopy- roxenes (Cpx) in CAIs, hosts perovskite (Pv), spinel (Sp), Os-Ir-W-Mo alloys, and hexamolybdenum. The observation of two structurally and chemically distinct highly refractory, low-Pt alloy minerals not associated with Fe-Ni alloys provides the first direct physical evidence for at least two separate carriers of the highly Fig. 1. Backscattered electron (BSE) image of the refractory metals in CAIs. Hexamolybdenum links Os- refractory inclusion containing allendeite and hex- rich and Pt-rich meteoritic alloys and may be a precur- amolybdenum. sor of the latter. Both new minerals have been ap- proved by the Commission on New Minerals, Nomen- clature and Classification of the International Minera- logical Association (IMA 2007-027, 029). Occurrence, Chemistry and Crystallography: Allendeite and hexamolybdenum occur in a partially altered refractory inclusion ~70 μm x 120 μm in sec- tion USNM 7554 (Fig. 1). Fig. 2 shows a single 15x25 μm crystal (revealed by electron backscatter diffraction (EBSD) orientation mapping) of allendeite with in- cluded Pv, Os-Ir-Mo-W alloy, and Sc-stabilized taz- heranite (Taz; cubic zirconia).
    [Show full text]
  • Mccoy, T. J. Mineralogical Evolution of Meteorites. Elements
    Mineralogical Evolution of Meteorites Halite crystals from the Monahans chondrite contain fl uid inclusions, which indicate Timothy J. McCoy* signifi cant water–rock interactions in the 1811-5209/10/0006-0019$2.50 DOI: 10.2113/gselements.6.1.19 meteorite’s parent body. Image width ~5 mm. COURTESY OF M. he approximately 250 mineral species found in meteorites record the ZOLENSKY AND R. BODNAR earliest stages of the birth of our solar system. Refractory minerals but eventually transformed some that formed during the violent deaths of other stars and during conden- T asteroids into molten worlds that sation of our own solar nebula mixed with a wide range of silicates, sulfi des, formed crusts, mantles, and cores and metals to form the most primitive chondritic meteorites. Subsequent reminiscent of our own planet. It aqueous alteration, thermal metamorphism, and shock metamorphism further is this history—from the earliest beginnings to the melting of diversifi ed the minerals found in meteorites. Asteroidal melting at fi rst planets—that we explore in this increased and then dramatically decreased mineralogical diversity, before a article. new phase of igneous differentiation that presaged the processes that would occur in terrestrial planets. THE STELLAR CAULDRON Earth’s mineralogical evolution KEYWORDS: mineral evolution, meteorites, asteroids, metamorphism, began not in the heat of an early differentiation, shock molten planet but in the blast furnace of stars that predated our FRAGMENTS FROM THE BEGINNING solar system. More than 4.6 billion years ago, presolar As Earth evolved over the last 4.5 billion years, its miner- grains formed when temperatures in the expanding enve- alogy changed.
    [Show full text]
  • Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules
    catalysts Review Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules Donghyeon Kim, Jaeheon Lee and Junhyeok Seo * Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; [email protected] (D.K.); [email protected] (J.L.) * Correspondence: [email protected] Abstract: The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts. Keywords: molybdenum; metalloenzymes; FDH; CODH; nitrogenase; homogeneous; heterogeneous electrocatalysts; HER; OER Citation: Kim, D.; Lee, J.; Seo, J. 1. Introduction Molybdenum-Containing Fixation of atmospheric nitrogen to ammonia has been promoted by the Haber–Bosch Metalloenzymes and Synthetic process, and the capacitated mass production
    [Show full text]
  • 2- Cluster Is Biologically Secure and Has Anti-Rotavirus Activity in Vitro
    molecules Article 2− The [Mo6Cl14] Cluster is Biologically Secure and Has Anti-Rotavirus Activity In Vitro Edgardo Rojas-Mancilla 1, Alexis Oyarce 2, Viviana Verdugo 2, Cesar Morales-Verdejo 3 , Cesar Echeverria 3, Felipe Velásquez 4, Jonas Chnaiderman 4, Fernando Valiente-Echeverría 4 and Rodrigo Ramirez-Tagle 5,* 1 Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] 2 Escuela de Tecnología Médica, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] (A.O.); [email protected] (V.V.) 3 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O Higgins, General Gana 1702, Santiago 8370854, Chile; [email protected] (C.M.-V.); [email protected] (C.E.) 4 Instituto de Ciencias Biomédicas, Programa de Virología, Universidad de Chile, Avda, Independencia 1027, Independencia 8380453, Chile; [email protected] (F.V.); [email protected] (J.C.); [email protected] (F.-V.E.) 5 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O Higgins, Avenida Viel 1497, Santiago 8370993, Chile * Correspondence: [email protected]; Tel.: +56-2-2477-2256 Received: 9 May 2017; Accepted: 29 June 2017; Published: 5 July 2017 2− Abstract: The molybdenum cluster [Mo6Cl14] is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro.
    [Show full text]
  • CHONDRITE NORTHWEST AFRICA 12590. Ksenia A. Konovalova1, Pavel Yu
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1961.pdf MINERALOGY OF THE COMPLEX REFRACTORY METAL NUGGETS IN B1 TYPE CAI FROM CV3- CHONDRITE NORTHWEST AFRICA 12590. Ksenia A. Konovalova1, Pavel Yu. Plechov1, Konstantin D. Litasov1,2, Vasily D. Shcherbakov3, Sergey P. Vasiliev1, 1Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 119071, Russia ([email protected]), 2Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow, 108840, Russia, 3Department of Geology, Moscow State University, Moscow, 119992, Russia Introduction: Ca-Al-inclusions are the oldest ruthenium. However, to emphasize specific objects in the solar system, which contain minerals, composition and type of origin “hexa-” may be such as spinel, melilite, hibonite, and perovskite, important. Pure Molybdenum and Iridium (also Fe and presumably condensed from a cooling gas of the solar Ni) have cubic crystal structure, however, with an nebula [1]. They often contain fremdlinge and refractory metal nuggets (RMN), that are enriched by siderophile elements such as PGE, Mo, and W [2-3]. Three major groups of hypotheses have been proposed to explain the origin of RMN: (1) condensation from the solar nebula or stellar environments, which is supported by data from type A CAI and studies of presolar grains [4-7]; (2) precipitation from CAI melt, which is very likely for type B CAI [8-9], or (3) secondary processes in the parent bodies or nebulae, which may be applicable for PMNs in fremdlinge and RMN of complex composition Fig. 1. BSE images of type B1 CAI from NWA 12590 [10-11]. CV3 chondrite with abundant refractory metal nuggets Here we report the detailed data on RMNs from B1 (a) and their examples (b-c).
    [Show full text]
  • NANOCRYSTALS of NATIVE MOLYBDENUM, IRON and TITANIUM WITHIN IMPACT GLASSES of LUNAR REGOLITH Andrey V
    14 New Data on Minerals. 2014. Vol. 49 NANOCRYSTALS OF NATIVE MOLYBDENUM, IRON AND TITANIUM WITHIN IMPACT GLASSES OF LUNAR REGOLITH Andrey V. Mokhov, Tatyana A. Gornostaeva, Pavel M. Kartashov, Enver E. Asadulin, Oleg A. Bogatikov Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Moscow, [email protected] This paper discusses the results of study of the impact glass fragments from the Mare Fecunditatis and Mare Crisium regolith samples brought on the Earth by the Soviet Automatic stations Luna-16 and Luna-24. Nanoinclusions of native molybdenum, iron and titanium were found in the samples with scanning and trans- mission electron microscopy (SEM, TEM). It is shown that these inclusions are single crystals. A natural high pressure native w titanium was identified for the first time. The composition and structure of glass matrix of the regolith samples indicates its extreme micro and nano heterogeneity. The probable formation mechanisms of the studied nanocrystals are discussed. 3 tables, 10 figures, 26 references. Keywords: native molybdenum, native iron, native w titanium, nanophases, single crystals, impact glasses, lunar regolith, Mare Fecunditatis, Mare Crisium. The main goal of the investigation of mi- Therefore, the aim of this study is investi- ne rals from lunar regolith (average fine lunar gation of structure and formation mecha- matter) was detetermination of the composi- nisms of metal inclusions in lunar glasses. tion and structure of microphases reflecting specific character of mineral-forming proces- Analytical techniques ses at high temperature and pressure gradient in oxygen-free and anhydrous atmosphere. Glass fragments of the regolith samples The impact events determining chemi cal and from the Mare Fecunditatis and Mare physical properties of lunar regolith made a Crisium brought to the Earth by AS Luna-16 substantial contribution to the formation of and Luna-24 were examined with transmis- these phases.
    [Show full text]