Acute Nephrotoxicity an Unusual Side Effect Or Adverse Toxicity of Captagon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theophylline Level
Lab Dept: Chemistry Test Name: THEOPHYLLINE LEVEL General Information Lab Order Codes: THEM Synonyms: Aminophylline, Theo-Dur, Slo-Bid CPT Codes: 80198 - Theophylline Test Includes: Theophylline concentration reported in mcg/mL. Logistics Test indications: Assessing and adjusting theophylline dosage for optimal therapeutic level. Assessing theophylline toxicity Theophylline is used to relax smooth muscles of the bronchial airways and pulmonary blood vessels to relieve and prevent symptoms of asthma and bronchospasm. Caffeine is a minor metabolite and is often seen in neonates taking theophylline. Peak levels are achieved in 30–90 minutes depending on the compound and type of preparation. Theophylline has a half-life of approximately 4 hours in children and adult smokers, and 8.7 hours in nonsmoking adults. Lab Testing Sections: Chemistry Referred to: Mayo Clinic Laboratories (MML Test: THEO) Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Monday - Saturday Turnaround Time: 1 day Special Instructions: N/A Specimen Specimen Type: Blood Container: Preferred: Serum Gel (SST) Alternate: Red Top Draw Volume: 1.5 mL blood Processed Volume: 0.5 mL (Minimum: 0.25 mL) serum Collection: Routine blood collection Special Processing: Lab Staff: Centrifuge specimen within 2 hours of collection. Store and ship at refrigerated temperature. Patient Preparation: None Sample Rejection: Mislabeled or unlabeled specimen; gross hemolysis Interpretive Reference Range: Therapeutic: Bronchodilation: 8.0-20.0 mcg/mL Neonatal apnea (< or =4 weeks old): 6.0-13.0 mcg/mL Interpretation: Response to theophylline is directly proportional to the serum level. Patients usually receive the best response when the serum level is above 8.0 mcg/mL, with minimal toxicity experienced as long as the level is less than or equal to 20.0 mcg/mL Critical Values: >20.0 mcg/mL Limitations: Coadministration of cimetidine and erythromycin will significantly inhibit theophylline clearance, requiring dosagereduction. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Study of Adulterants and Diluents in Some Seized Captagon-Type Stimulants
MedDocs Publishers ISSN: 2638-1370 Annals of Clinical Nutrition Open Access | Mini Review Study of Adulterants and Diluents in Some Seized Captagon-Type Stimulants Ali Zaid A Alshehri1,2*; Mohammed saeed Al Qahtani1,3; Mohammed Aedh Al Qahtani1,4; Abdulhadi M Faeq1,5; Jawad Aljohani1,6; Ammar AL-Farga7 1Department of Medical Laboratory Technology, College of Applied Medical Sciences, University of Jeddah, Saudi Arabia 2Poison Control and Medical Forensic Chemistry Center, Ministry of Health, Riyadh, Saudi Arabia 3Khammis Mushayte Maternity & Children Hospital, Ministry of Health, Saudi Arabia 4Ahad Rufidah General, Hospital, Aseer, Ministry of Health, Saudi Arabia 5Comprehensive Specialized Clinics of Security Forces in Jeddah, Ministry of Interior, Saudi Arabia 6Compliance Department, Yanbu Health Sector, Ministry of Health, Saudi Arabia 7Department of Biochemistry, Faculty of Science, University of Jeddah, Saudi Arabia *Corresponding Author(s): Ali Zaid A Alshehri Department of Medical Laboratory Technology, College of Applied Medical Sciences, University of Jeddah, Saudi Arabia Email: [email protected] Received: Apr 27, 2020 Accepted: Jun 05, 2020 Published Online: Jun 10, 2020 Journal: Annals of Clinical Nutrition Publisher: MedDocs Publishers LLC Online edition: http://meddocsonline.org/ Copyright: © Alshehri AZA (2020). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License Introduction ATS are synthetic compounds belonging to the class of stimu- and heroin users combined [3,4]. Fenethylline, 7-(2-amethyl lants that excite the Central Nervous System (CNS) to produce phenyl-amino ethyl)-theophylline, is a theophylline derivative of adrenaline-like effects such as amphetamine, methamphet- amphetamine. It is a psychoactive drug which is similar to am- amine, fenethylline, methylphenidate and dextroamphetamine phetamine in many ways [5]. -
Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate. -
(12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb. -
Reviews Insights Into Pathophysiology from Medication-Induced Tremor
Freely available online Reviews Insights into Pathophysiology from Medication-induced Tremor 1* 1 1 1 John C. Morgan , Julie A. Kurek , Jennie L. Davis & Kapil D. Sethi 1 Movement Disorders Program Parkinson’s Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta, GA, USA Abstract Background: Medication-induced tremor (MIT) is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT), but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor. Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor. Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient. Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine) that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (b-adrenergic agonists), but others may influence the central component (amitriptyline). -
Adenosine Strongly Potentiates Pressor Responses to Nicotine in Rats (Caffeine/Blood Pressure/Sympathetic Nervous System) REID W
Proc. Nadl. Acad. Sci. USA Vol. 81, pp. 5599-5603, September 1984 Neurobiology Adenosine strongly potentiates pressor responses to nicotine in rats (caffeine/blood pressure/sympathetic nervous system) REID W. VON BORSTEL, ANDREW A. RENSHAW, AND RICHARD J. WURTMAN Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Communicated by Walle J. H. Nauta, May 14, 1984 ABSTRACT Intravenous infusion of subhypotensive doses epinephrine output during nerve stimulation is decreased (6). of adenosine strongly potentiates the pressor response of anes- Adenosine can be produced ubiquitously and is present in thetized rats to nicotine. A dose of nicotine (40 jpg/kg, i.v.), plasma and cerebrospinal fluid (7, 8); the nucleoside can which, given alone, elicits a peak increase in diastolic pressure therefore potentially act at a number of different loci, both of -15 mm Hg, increases pressure by -70 mm Hg when arte- central and peripheral, within the complex neural circuitry rial plasma adenosine levels have been increased to 2 puM from involved in the regulation of a single physiological function, a basal concentration of =1 puM. The pressor response to ciga- such as maintenance of blood pressure or heart rate. Neither rette smoke applied to the lungs is also strongly potentiated normal plasma adenosine levels nor the relative and absolute during infusion of adenosine. Slightly higher adenosine con- sensitivities of neural and cellular processes to adenosine centrations (-4 jaM) attenuate pressor responses to electrical have been well characterized in intact animals. The studies stimulation of preganglionic sympathetic nerves, or to injec- described below explore the effects of controlled measured tions of the a-adrenergic agonist phenylephrine, but continue alterations in arterial plasma adenosine concentrations on to potentiate pressor responses to nicotine. -
Narco-Terrorism Today: the Role of Fenethylline and Tramadol
Narco-terrorism today: the role of fenethylline and tramadol Introduction The relationship between psychoactive substances and violent crimes such as war acts and terrorism dates long back in history. Viking warriors famously fought in a trance-like state, probably as a result of taking agaric "magic" mushrooms and bog myrtle (McCarthy, 2016). More recently, under the German Nazis’ Third Reich, methamphetamine gained an extreme popularity, despite an official “drug-free” propaganda. Under the trademark Pervitin, it could be sold without prescription until 1939, and it was not regulated by the Reich Opium Law of 1941. Pervitin was commonly used in recreational and working settings, and, of course, the stimulant was shipped to German soldiers when the troops invaded France, allowing them to march sleepless for 36 to 50 hours (Ohler, 2016). On the other side, Benzedrine, a racemic mixture of amphetamine initially developed as a bronchodilator, was the stimulant of choice of the Allied forces during World War II (McCarthy, 2016). Vietnam War (1955-1975) is considered to be the first “pharmacological war” of modern history, so called due to an unprecedented high level of consumption of psychoactive substances by military personnel (Kamienski, 2016). In 1971, a report by the House Select Committee on Crime revealed that from 1966 to 1969, the US armed forces had used 225 million tablets of stimulants, mostly Dexedrine (dextroamphetamine), an amphetamine derivative that is nearly twice as strong as the Benzedrine used in the Second World War (Kamienski, 2016). The use of illicit drugs such as stimulants or painkillers by terrorists or insurgents while undertaking their terrorist activities has been hypothesized but still needs further documentation. -
A 1 Adenosine Receptor Agonists and Antiagonists
Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 725 782 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C07D 473/08, C07H 19/167, of the grant of the patent: C07D 519/00, A61K 31/52 15.12.1999 Bulletin 1999/50 // (C07D51 9/00, 493:00, 473:00) (21) Application number: 95901070.3 (86) International application number: PCT/US94/12388 (22) Date of filing: 28.10.1994 (87) International publication number: WO 95/11904 (04.05.1995 Gazette 1995/19) (54) A 1 ADENOSINE RECEPTOR AGONISTS AND ANTAGONISTS A1 ADENOSIN REZEPTOR AGONISTEN UND ANTAGONISTEN AGONISTES ET ANTAGONISTES DE RECEPTEURS DE L'ADENOSINE A 1 (84) Designated Contracting States: • SCAMMELLS, Peter, J. AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL Highton, VIC 3216 (AU) PT SE • MILNER, Peter, Gerard Los Altos, CA 94022 (US) (30) Priority: 28.10.1993 US 144459 • PFISTER, Jurg, Roland Los Altos, CA 94024 (US) (43) Date of publication of application: • SCHREINER, George, Frederic 14.08.1996 Bulletin 1996/33 Los Altos, CA 94022 (US) (73) Proprietor: UNIVERSITY OF FLORIDA (74) Representative: Perry, Robert Edward RESEARCH FOUNDATION, INC. GILL JENNINGS & EVERY Gainesville, FL 32611 (US) Broadgate House 7 Eldon Street (72) Inventors: London EC2M 7LH (GB) • BELARDINELLI, Luiz Gainesville, FL 32605 (US) (56) References cited: • OLSSON, Ray EP-A- 0 374 808 EP-A- 0 415 456 Tampa, FL 33609-3504 (US) WO-A-92/00297 WO-A-94/16702 • BAKER, Stephen DE-A- 4 205 306 US-A- 5 288 721 Gainesville, FL 32607 (US) DO CM 00 Is- lO CM Is- Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. -
Methylxanthines and Neurodegenerative Diseases: an Update
nutrients Review Methylxanthines and Neurodegenerative Diseases: An Update Daniel Janitschke 1,† , Anna A. Lauer 1,†, Cornel M. Bachmann 1, Heike S. Grimm 1, Tobias Hartmann 1,2 and Marcus O. W. Grimm 1,2,* 1 Experimental Neurology, Saarland University, 66421 Homburg/Saar, Germany; [email protected] (D.J.); [email protected] (A.A.L.); [email protected] (C.M.B.); [email protected] (H.S.G.); [email protected] (T.H.) 2 Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66421 Homburg/Saar, Germany * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Methylxanthines (MTX) are purine derived xanthine derivatives. Whereas naturally occurring methylxanthines like caffeine, theophylline or theobromine are widely consumed in food, several synthetic but also non-synthetic methylxanthines are used as pharmaceuticals, in particular in treating airway constrictions. Besides the well-established bronchoprotective effects, methylxanthines are also known to have anti-inflammatory and anti-oxidative properties, mediate changes in lipid homeostasis and have neuroprotective effects. Known molecular mechanisms include adenosine receptor antagonism, phosphodiesterase inhibition, effects on the cholinergic system, wnt signaling, histone deacetylase activation and gene regulation. By affecting several pathways associated with neurodegenerative diseases via different pleiotropic mechanisms and due to its moderate side effects, intake of methylxanthines have been suggested to be an interesting approach in dealing with neurodegeneration. Especially in the past years, the impact of methylxanthines in neurodegenerative diseases has been extensively studied and several new aspects have been elucidated. In this review Citation: Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Grimm, H.S.; we summarize the findings of methylxanthines linked to Alzheimer´s disease, Parkinson’s disease Hartmann, T.; Grimm, M.O.W. -
Alphabetical Listing of ATC Drugs & Codes
Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04 -
(12) Patent Application Publication (10) Pub. No.: US 2011/0142957 A1 VAN KEMPEN (43) Pub
US 2011 O142957A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0142957 A1 VAN KEMPEN (43) Pub. Date: Jun. 16, 2011 (54) METHOD OF TREATING PARTURIENT Publication Classification PLACENTAL MAMMALS IN ORDER TO (51) Int. Cl. REDUCE MATERNAL AND/OR UTERINE A633/42 (2006.01) EXHAUSTION A633/04 (2006.01) A633/00 (2006.01) (76) Inventor: Theo VAN KEMPEN, Sint Stevens A6II 3/522 (2006.01) Woluwe (BE) A63L/35 (2006.01) (21) Appl. No.: 13/030,422 (52) U.S. Cl. ... 424/601; 424/709: 424/722: 514/263.34; 514/654 (22) Filed: Feb. 18, 2011 (57) ABSTRACT Related U.S. Application Data The present invention relates to a method of facilitating the birth process of placental mammals, especially to a method of (62) Division of application No. 12/063,830, filed on Aug. reducing delays in the birth process and, thereby, complica 4, 2008, now Pat. No. 7,893,070, filed as application tions resulting there from that may negatively affect the health No. PCT/NL2006/050201 on Aug. 14, 2006. and wellbeing of the mother and increase the incidence of stillbirths and/or neonatal mortality. According to the present (60) Provisional application No. 60/707,954, filed on Aug. invention delays in parturition that result from maternal and/ 15, 2005. or uterine exhaustion may be prevented or reduced by the administration of an effective amount of one or more psycho (30) Foreign Application Priority Data motor stimulants to the parturient mammal prior to and/or during parturition. Said psychomotor stimulant is selected Aug.