Biography of Mark A. Ratner BIOGRAPHY

Total Page:16

File Type:pdf, Size:1020Kb

Biography of Mark A. Ratner BIOGRAPHY Biography of Mark A. Ratner BIOGRAPHY ark Ratner describes him- theory is a relatively simple mathemati- self as a theoretical materi- cal model of a disordered system that als chemist. Arguably the relates concentration of conductor sites M youngest of the chemical within a theoretical lattice structure to sciences, materials chemistry is con- the flow (or percolation) of charge, par- cerned with how chemical interactions ticularly ionic diffusion. Below a thresh- control and determine the properties of old concentration, or the percolation materials. Throughout his career, Rat- threshold, the substance is an insulator, ner has aimed to develop models to de- and above that concentration it is a con- fine a theoretical language for how the ductor. Over the past 10 years, Ratner molecular structures of a material are and Nitzan have examined the proper- manifested in its physical properties. His ties both of electron transfer within work has focused on several areas in- molecules and electron transport in mo- cluding charge transport (1, 2), ion lecular wire junctions (11, 12). In such transfer (3), nonlinear optical behavior junctions, single molecules or small (4), and quantum dynamics (5, 6). Elec- groups of molecules conduct electrical tron-transfer reactions, so fundamental current between two electrodes. Because to life, underlie biological processes such of the very small size of the structures, as photosynthesis, cytochrome p450 re- both the molecular electronic structure actions, and cellular respiration as well and the connection between the mole- as materials processes such as electro- chemistry and corrosion. ‘‘It’s one of the cule and the electrodes strongly influ- most important reactions in chemistry, Mark A. Ratner ence the current–voltage characteristics which is why I’ve spent 30 years on it of the junction. and will spend the rest of my life on it,’’ and an electron-deficient ‘‘acceptor’’ Survival of the Fittest he said. group, spatially separated by a noncon- Born in Cleveland in 1942, Ratner Ratner’s Inaugural Article (13), pub- jugated bridge, could be placed in a sin- graduated from Harvard University lished in this issue of PNAS, tackles one gle molecule, the electronic asymmetry (Cambridge, MA) in 1964 with an un- of the most daunting challenges in com- dergraduate degree in chemistry. He created would lead to an equivalent putational chemistry: how to determine obtained his Ph.D. in chemistry from asymmetry in the electrical conduction a protein’s folded tertiary structure Northwestern University (Evanston, IL), through the molecule. That is, the mole- based on its primary amino acid se- did postdoctoral work in Aarhus and cule would act as a molecular rectifier. quence. A basic statistical calculation Munich, and taught chemistry at New Importantly, these molecules could tells us that 20 amino acids can produce York University (New York) from 1970 replace or perhaps complement semi- an astronomical number of sequences. until 1974. Later he served as a visiting conductors in electronic applications. Take any 2 of the 20 amino acids and professor with the National Sciences Although not yet at the stage of com- you can produce 400 possible sequences; Research Council at Odense University mercialization, this approach has many put 3 together, and you produce 8,000 (Odense, Denmark). Currently, Ratner advantages, and the trend is clear. The sequences, and so on. The number is Morrison Professor of Chemistry at size of the molecules, between 1 and quickly escalates, especially when you Northwestern University, where he 100 nm, makes them cheaper, more consider a peptide made up of hundreds served as department chair from 1988 efficient, and more precisely reproduc- or thousands of amino acids. Only a few until 1991 and as associate dean of the ible than the smallest possible silicon of the possible structures actually exist College of Arts and Sciences from 1980 circuits (9). in nature, but this calculation under- until 1984. He was nominated to the Israeli Connection scores the complexity of the problem. National Academy of Sciences in 2002. Ratner and colleagues approach this CHEMISTRY Throughout his career, Ratner has spent sequence-to-structure problem by using Molecules as Electronic Devices extended periods of time in Israel and an evolutionary algorithm computa- has worked with many distinguished sci- As Ratner tells it, one of his most im- tional method. Conventional approaches entists, including Joshua Jortner and portant contributions to science came to the computation of protein structures Abraham Nitzan from Tel Aviv Univer- early in his career in 1974, when he and include the solving of Newton’s equa- sity (Tel Aviv) and Raphael Levine, his graduate student Ari Aviram pub- tions using molecular dynamics and the Robert Gerber, and Ronnie Kosloff lished a paper in Chemical Physical Let- random sampling and selection of new from the Hebrew University of Jerusa- BIOPHYSICS ters in which they introduced the idea geometries based on energy criteria us- that molecules could act as electronic lem (Jerusalem). ‘‘Nitzan has influenced ing Monte Carlo methods. However, circuit components (7). The idea re- me more than any other scientist,’’ Rat- both of these approaches can fail to find ceived little attention at the time but ner said. ‘‘He has taught me how formal energy minima, especially for structures has since been recognized as a major theory integrates with the real world; he that are dense and compact. contribution to the field of molecular is a master at that.’’ In collaboration electronics (8). This seminal paper sug- with Nitzan, Ratner has employed dy- gested that single molecules can per- namic percolation theory to investigate This is a Biography of a recently elected member of the form some functions of electronic the dynamics of molecular materials and National Academy of Sciences to accompany the member’s devices. Aviram and Ratner proposed charge transport and relaxation in mate- Inaugural Article on page 7215. that if an electron-rich ‘‘donor’’ group rials systems (3, 10). Dynamic percolation © 2004 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0402757101 PNAS ͉ May 11, 2004 ͉ vol. 101 ͉ no. 19 ͉ 7213–7214 Downloaded by guest on October 2, 2021 With their approach, Ratner and col- Jan Linderberg, for showing him how Ratner and Ratner explain some of the leagues select structures in a manner theory can be useful in understanding many applications of nanotechnology. In analogous to Darwinian natural selec- nature. In addition, he names several one section they describe molecular tion. In the Darwinian process, popula- scientific heroes, including Rudolph motors, organic molecules combined tions compete for resources; the ones Marcus, who won a Nobel Prize in with metal atoms, which are capable of that survive and evolve are the ones that moving molecules many times larger compete most successfully. Likewise, than the device itself. Such devices may Ratner compares several candidate Ratner identifies the one day be able to deliver drugs directly structures based on their energy, on to cells. In their latest book, New analogies to other known structures, and area of artificial Weapons for New Wars: Nanotechnology on a combination of these two criteria. and Homeland Security (15), Ratner Much like Darwin’s ‘‘survival of the photosynthesis as and Ratner describe ways in which fittest,’’ the structures that best fit the nanotechnology-based sensors can be criteria are favored for continuation in crucially important. used to detect food, water, or air con- the next generation of computations. taminated with biological weapons, as This evolutionary method is especially well as nanotechnology-based remedia- efficient for complex problems that are chemistry for his work on chemical ki- tion technologies that could heal difficult to attack with conventional netics, and Josef Michl of the chemistry environmental damage ensuing from methods such as molecular dynamics and biochemistry department at the terrorism. On a more technical level, and Monte Carlo simulations. By using University of Colorado (Boulder), a Ratner and his colleague George Schatz this approach, Ratner’s team was able to friend of 30 years and an unending have written two textbooks on quantum find several previously unknown stable source of ideas and imagination. mechanics in chemistry (16, 17). structures for two peptides: unsolvated Another person whom Ratner credits Ratner says ultimately he would like met-enkephalin (Tyr-Gly-Gly-Phe-Met) with influencing him is scientist and sci- to be able to design nanoscale self- ϩ ϩ assembled structures. ‘‘Right now, we and Ac-(Ala-Gly-Gly)5-Lys H . ence writer Roald Hoffmann, who won a Nobel Prize in chemistry for theories can determine the structure of a mole- Popular Science concerning the course of chemical reac- cule, but we don’t know as much about Ratner, who is married and has two tions. Hoffmann, a professor at Cornell how to design a molecule to have a cer- grown children, credits several people in University (Ithaca, NY), writes poetry tain structure,’’ he said. In the area of addition to Nitzan with serving as role and books explaining chemistry to the electron transfer, Ratner identifies one models. The most important of these, general public. ‘‘It’s his appreciation of major theme as crucially important: the Ratner said, was his father, who came to the role of science in society and the process of artificial photosynthesis, or the United States from Poland ‘‘with way he conveys these concepts to the photovoltaics, with the ultimate goal of nothing’’ and demonstrated how to live public that I find very important,’’ ‘‘trying to find a way to capture energy a life of service to others. ‘‘He spent his Ratner said. that is environmentally friendly and use- time setting up schools to train people Ratner has written some popular ful.’’ According to Ratner, this type of who didn’t have job skills, chairing hos- books of his own, including two recent work is usually done in a wonderfully pital and school boards, things like books he coauthored with his son, intuitive fashion by brilliant people with that,’’ he said.
Recommended publications
  • 1944, TEL AVIV, ISRAEL ZAHAL (Israeli) Military Service: 1966‐1969 Marital Status (No
    ABRAHAM NITZAN, Ph.D. University of Pennsylvania February 2018 CURRICULUM VITAE Born: 1944, TEL AVIV, ISRAEL ZAHAL (Israeli) Military Service: 1966‐1969 Marital Status (No. of children): Married, 2 children EDUCATION 1961‐1964 Hebrew University, Jerusalem Chemistry B.Sc. Summa cum laude 1964‐1966 Hebrew University, Jerusalem Chemistry M.Sc. Summa cum laude 1970‐1972 Tel‐Aviv University Chemistry Ph.D. Summa cum laude Master's Thesis: On the Radiation Chemistry of Water Supervisor: Professor G. Czapski Doctoral Dissertation: Radiationless Transitions in Molecular Systems Supervisor: Professor J. Jortner ACADEMIC AND PROFESSIONAL EXPERIENCE Period Institute Department Function 2015‐ University of Chemistry Professor Pennsylvania 2014‐2015 Free University Berlin Physics Visiting Professor 2013‐ Tel Aviv University Chemistry Prof. Emeritus 1981‐2013 Tel Aviv University Chemistry Professor 2006‐2012 Northwestern Univ Chemistry Adjunct Professor 2003‐2015 Tel Aviv University Sackler Institute of Director Advanced Studies 1995‐1998 Tel Aviv University Sackler Faculty of Dean Exact Sciences 1990‐1991 Weizmann Institute Chemistry Professor 1984‐1987 Tel Aviv University Chemistry Chairman 1975‐1981 Tel Aviv University Chemistry Assoc. Prof. 1974‐1975 Northwestern Univ Chemistry Assistant Prof 1974‐1975 Univ. of Chicago Chemistry Research Assoc. 1972‐1974 M.I.T. Chemistry Research Assoc. 1 ABRAHAM NITZAN, Ph.D. University of Pennsylvania RESEARCH INTERESTS Theoretical studies of activation, relaxation and energy transfer processes in molecular systems. Theory of transport phenomena in condensed phases and on surfaces. Theory of chemical reaction rates in condensed phases. Theory of ionic diffusion and conductivity in solid ionic conductors, in polymers and in confined systems. Electromagnetic and electronic interactions in small particles and clusters Theoretical investigations of charge transfer and charge separation phenomena in condensed phases, at interfaces and in nano‐junctions.
    [Show full text]
  • R. Stephen Berry 1931–2020
    R. Stephen Berry 1931–2020 A Biographical Memoir by Stuart A. Rice and Joshua Jortner ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RICHARD STEPHEN BERRY April 9, 1931–July 26, 2020 Elected to the NAS, 1980 We have prepared this memoir to bear witness to the life of R. Stephen (Steve) Berry, with emphasis on the view that a memorial is about reminding ourselves and others of more than his many and varied contributions to science; it is also to remind us of his personal warmth and freely offered friendship, of his generous support for all of us in a variety of situations, and of his loyalty to his friends and the institutions he served. The record of an individ- ual’s accomplishment is commonly taken to define his/ her legacy. Using that protocol, creative scientists are fortunate in that their contributions are visible, and those contributions endure, or not, on their own merits. Steve Berry was one of the most broadly ranging and influen- tial scientists in the world. His seminal experimental and By Stuart A. Rice theoretical contributions are distinguished by a keen eye and Joshua Jortner for new concepts and innovative and practical analyses. These contributions, which are remarkable in both scope and significance, have helped to shape our scientific perception. They have had, and continue to have, great influence on the development of chemistry, biophysics materials science, the science and technology related to the use, production, and conservation of energy, the societal applications of science and technology, and national and international science policy.
    [Show full text]
  • Fall 2019 SPECIAL DAY/TIME/LOCATION: Friday
    The Chemistry and Biochemistry Departmental Seminar Series covers a broad range of fields in the Chemical and Biochemical Sciences. In past seminars, scientists from Academia, Government, and Industry have presented their most recent discoveries and contributions in their respective areas. This Seminar Series offers students and faculty the opportunity to interact directly with other leaders in their specializations and to gain a good overview of the entire range of fields in Chemistry and Biochemistry. Fall 2019 Seminars are held on Tuesdays in CL 1009 (Clendenin Building, Room 1009 on the Kennesaw Campus), 12:30 - 1:30pm, unless otherwise noted with special day/time/location information. All are invited to attend. SPECIAL DAY/TIME/LOCATION: Friday, September 20, 2019 – 2:30pm in CL 2003 Dr. Jeffrey I. Seeman, Department of Chemistry, University of Richmond Title: Was Plagiarism Involved in the Conceptualization of the Woodward-Hoffmann Rules? Abstract: In 1981, Roald Hoffmann and Kenichi Fukui shared the Nobel Prize in Chemistry “for their theories, developed independently, concerning the course of chemical reactions.” Had Robert B. Woodward (1917 – 1979) lived two years longer, he would surely have received his second Nobel Prize in Chemistry for his contributions to the Woodward-Hoffmann rules. In the March 29, 2004 issue of Chemical & Engineering News, E. J. Corey wrote in his Priestley Medal Address, “On May 4, 1964, I suggested to my colleague R. B. Woodward a simple explanation involving the symmetry of the perturbed (HOMO) molecular orbitals for the stereoselective cyclobutene/1,3-butadiene and 1,3,5-hexatriene/cyclohexadiene conversions that provided the basis for the further development of these ideas into what became known as the Woodward-Hoffmann rules.” Letters between Corey and Hoffmann in 1981 and 1984 and other relevant information will be shown and discussed.
    [Show full text]
  • Curriculum Vitae
    Michael Galperin, Ph.D. University of California San Diego CURRICULUM VITAE January 2021 Name: Michael Galperin Born: May 1969, Ekaterinburg, Russia Marital status: Married (+1) Citizenship: USA, Israel, Russia Office Address: Dept. of Chemistry & Biochemistry Urey Hall, Room 3218 UCSD Mail Code 0340 La Jolla, CA 92093-0340 phone: (858) 246-0511 E-mail: [email protected] URL: http://galperingroup.ucsd.edu/ 1 Michael Galperin, Ph.D. University of California San Diego Research Interests • Electron transport in condensed phases • Dissipation and relaxation processes • Open quantum systems out of equilibrium • Molecular electronics Experience since 07/2020 Professor University of California San Diego, La Jolla, CA, USA 07/2014–06/2020 Associate Professor University of California San Diego, La Jolla, CA, USA 07/2008–06/2014 Assistant Professor University of California San Diego, La Jolla, CA, USA 08/2007–06/2008 Director’s Postdoctoral Fellow Los Alamos National Laboratory, Los Alamos, NM, USA 08/2007–07/2008 Visiting Scholar Northwestern University, Evanston, IL, USA 09/2003–08/2007 Senior Research Associate Northwestern University, Evanston, IL, USA 09/2002–08/2003 Postdoctoral Fellow Duke University, Durham, NC, USA 1991–1995 Junior Scientific Researcher Institute of Metal Physics, Russian Academy of Sciences, Ekaterinburg, Russia 2 Michael Galperin, Ph.D. University of California San Diego Education 03/1996–01/2003 Ph.D. (Chemical Physics) Tel Aviv University, (with distinction) Tel Aviv, Israel 09/1986–06/1991 M.Sc. (Theoretical Physics) Ural State University, (with distinction) Ekaterinburg, Russia Ph.D. Thesis: “Electron tunneling through molecular layers” Supervisor: Prof. Abraham Nitzan Completion: January 2003 M.Sc. Thesis: “Calculation of the spectrum of self-ordering alloy” Supervisor: Prof.
    [Show full text]
  • Equilibrium Consideration
    On the origin of ground-state vacuum-field catalysis: Equilibrium consideration Cite as: J. Chem. Phys. 152, 234107 (2020); https://doi.org/10.1063/5.0006472 Submitted: 02 March 2020 . Accepted: 27 May 2020 . Published Online: 15 June 2020 Tao E. Li , Abraham Nitzan , and Joseph E. Subotnik COLLECTIONS Paper published as part of the special topic on Photocatalysis and Photoelectrochemistry Note: This paper is part of the JCP Special Topic on Photocatalysis and Photoelectrochemistry. ARTICLES YOU MAY BE INTERESTED IN State-pairwise decoherence times for nonadiabatic dynamics on more than two electronic states The Journal of Chemical Physics 152, 234105 (2020); https://doi.org/10.1063/5.0010081 Modeling voltammetry curves for proton coupled electron transfer: The importance of nuclear quantum effects The Journal of Chemical Physics 152, 234108 (2020); https://doi.org/10.1063/5.0010412 Polaritonic normal modes in transition state theory The Journal of Chemical Physics 152, 161101 (2020); https://doi.org/10.1063/5.0007547 J. Chem. Phys. 152, 234107 (2020); https://doi.org/10.1063/5.0006472 152, 234107 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp On the origin of ground-state vacuum-field catalysis: Equilibrium consideration Cite as: J. Chem. Phys. 152, 234107 (2020); doi: 10.1063/5.0006472 Submitted: 2 March 2020 • Accepted: 27 May 2020 • Published Online: 15 June 2020 Tao E. Li,1,a) Abraham Nitzan,1,2,b) and Joseph E. Subotnik1,c) AFFILIATIONS 1 Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 2School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel Note: This paper is part of the JCP Special Topic on Photocatalysis and Photoelectrochemistry.
    [Show full text]
  • Nobel Lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y
    BUILDING BRIDGES BETWEEN INORGANIC AND ORGANIC CHEMISTRY Nobel lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y. 14853 R. B. Woodward, a supreme patterner of chaos, was one of my teachers. I dedicate this lecture to him, for it is our collaboration on orbital symmetry conservation, the electronic factors which govern the course of chemical reac- tions, which is recognized by half of the 1981 Nobel Prize in Chemistry. From Woodward I learned much: the significance of the experimental stimulus to theory, the craft of constructing explanations, the importance of aesthetics in science. I will try to show you how these characteristics of chemical theory may be applied to the construction of conceptual bridges between inorganic and organic chemistry. FRAGMENTS Chains, rings, substituents - those are the building blocks of the marvelous edifice of modern organic chemistry. Any hydrocarbon may be constructed on paper from methyl groups, CH 3, methylenes, CH 2, methynes, CH, and carbon atoms, C. By substitution and the introduction of heteroatoms all of the skeletons and functional groupings imaginable, from ethane to tetrodotoxin, may be obtained. The last thirty years have witnessed a remarkable renaissance of inorganic chemistry, and the particular flowering of the field of transition metal organo- metallic chemistry. Scheme 1 shows a selection of some of the simpler creations of the laboratory in this rich and ever-growing field. Structures l-3 illustrate at a glance one remarkable feature of transition metal fragments. Here are three iron tricarbonyl complexes of organic moie- ties - cyclobutadiene, trimethylenemethane, an enol, hydroxybutadiene - which on their own would have little kinetic or thermodynamic stability.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • The Grand Challenges in the Chemical Sciences
    The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade.
    [Show full text]
  • Spring 2015 Message from the Chair Chemistry Welcomes New Faculty Member Dr
    CHEM Discovery chemistry.clemson.edu Spring 2015 Message from the Chair CHEMISTRY WELCOMES NEW FACULTY MEMBER DR. CARLOS GARCIA I hope that your spirits have been re- freshed and renewed by the arrival of Spring. This is the season that brings forth budding hopes and promises of Dr. Carlos Garcia is the newest rejuvenation and new growth even addition to our program and joined though T. S. Eliot tells us “April is the the Department of Chemistry in cruelest month, … mixing memory and August of 2015. Dr. Garcia’s desire”. research lies at the interface between microfluidics and nanomaterials and is focused on the development of The faculty’s hard work over the years novel analytical has blossomed into a number of awards. strategies to The New England Regional Section of d e t e r m i n e the Society for Applied Spectroscopy biomedically- announced that Professor Ken Marcus r e l e v a n t will receive the 2015 Lester W. Strock molecules. Dr. Award at its national meeting in Sep- retiring, the department is in the midst Garcia’s group tember for “the development of the of a search for two new instructors. will continue liquid sampling-atmospheric pressure i n v e s t i g a t i n g glow discharge ionization source”. Pro- In August 2014, the department held a the driving fessor Emeritus Dwaine Eubanks was retreat to develop a new strategic plan forces and awarded the George C. Pimentel Award and a re-examination of both the un- consequences in Chemical Education for his work as dergraduate and graduate programs in of the interaction of proteins with director of the ACS Examinations In- chemistry was conducted during the nanostructured surfaces and in stitute and his work in developing text- current academic year.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Henry Taube by J
    Chemical Education Today Nobel Centennial Essays A Century of Chemical Dynamics Traced through the Nobel Prizes W 1983: Henry Taube by J. Van Houten Nobel Prize in Chemistry 1983 Photo by Rudy Baum Henry Taube (1915– ) for his work on the mechanisms of electron transfer Henry Taube, shown on reactions, especially in metal complexes the cover of C&E News. This is the eighth in a series of essays (1) written in com- Reprinted with permis- memoration of the centennial of the Nobel Prize, examin- sion from Chemical & ing the history of chemical dynamics in the 20th century.W Engineering News, May 21, 1984. © As his Nobel citation (2) states, Henry Taube studied elec- Copyright 1984 Ameri- tron transfer reactions of transition metal complexes. The can Chemical Society. Nobel Prize to Taube came exactly seventy years after it was awarded to Alfred Werner (3) for developing the structural chemistry of inorganic transition metal complexes. During the entire 20th century, Taube and Werner are the only in- to Werner’s. His early mechanistic studies relied heavily on organic transition metal chemists to win a Nobel Prize.1 In isotope tracer techniques developed by George de Hevesy, the fact, many of the complexes that Taube studied were first 1943 Nobel Laureate (1d). The second of the 100 references prepared or characterized by Werner. in Taube’s Nobel lecture (6) is to a 1920 paper where de Taube’s citation (2) concludes with the statement: “There Hevesy used naturally occurring lead isotopes to follow the is no doubt that Henry Taube is one of the most creative exchange reaction between Pb2+ and Pb4+ (7).
    [Show full text]
  • Frontiers of Chemical Sciences
    Frontiers of Chemical Sciences Research and Education in Middle East to the ACS’s International Activities the Middle East Committee and, subsequently, to the ACS Board of Directors, chaired by Dr. Nina I. McClelland. In the end, the conference was organized by ACS’s International by John M. Malin Activities Committee and co-sponsored by the Royal Society of Chemistry (RSC) and IUPAC. n regions where political and cultural conflicts are Wanting to also attract the attention of national overwhelming, can science improve the quality of governments, the organizing committee invited some Ilife? This basic question has been addressed of the best chemical scientists from the region along recently by a group of 57 scientists from 15 nations, with six Nobel Laureates: Dr. Claude Cohen-Tannoudji including 35 chemists and chemical engineers from spoke on “Cooling Atoms with Light: A Recent Middle Eastern countries who all met in neutral Application of Molecular Physics”; Dr. Dudley ground to discuss and share common problems. This Herschbach’s lecture on chemical education and first-of-its-kind meeting, held 6–11 December 2003 in research was entitled “The Impossible Takes a Little Malta, aimed to foster relationships among chemical Longer”; Dr. Roald Hoffmann discussed scientists from throughout the Middle East who oth- “Protochemistries for Antiquity—Teaching Tools for erwise might not have the opportunity to interact Today”; Dr. Yuan T. Lee spoke on “Dynamics of with one another. Attendees included six Egyptians, Chemical Reactions and Photochemical Processes”; three Iranians, seven Israelis, five Jordanians, and Dr. Jean-Marie Lehn discussed “From Molecular to eight from the Palestinian Authority.
    [Show full text]