XDENTIFYING DOMAINS of SHIGA-Lim TOXIN 1 THAT

Total Page:16

File Type:pdf, Size:1020Kb

XDENTIFYING DOMAINS of SHIGA-Lim TOXIN 1 THAT XDENTIFYING DOMAINS OF SHIGA-LIm TOXIN 1 THAT ARE RESPONSIBLE FOR ITS MEMBRANE TRANSLOCATION by Mazen T. Saleh A Thesis Submitted in Conformity with the Requirements for the Degre of Doctor of Philosophy, Graduate Department of Medical Biophysics, in the University of Toronto Ocopyright by Mazen T. Saleh. 1997 National Library Bibliothéque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellington Ottawa ON KIA ON4 OttawaON K1AOW canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettaot à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othexwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT Identifyùig domains of shiga-like toxin 1 that are responsible for its membrane translocation Mazen T. Saleh Docmr of Philosophy.1997, Graduate Department of Medical Biophysics, in the University of Toronto Shiga-like toxin 1 (SLT-1).produced by pathogrnic strains of Escherchia coli. is a representative mernber of a superfamily of multimeric protein toxios known as the A/B family of toxins. SLT-1 is intemalized by cells via receptor-mediated endocytosis and localizes in various intracellular compartments. However, targets of these toxins are invariably Iocated in the cytoplasm. thus internalized SLT-I rnust translocate across a vesicular membrane in order to deliver its cytotoxic function. Earlier studies have revealed that toxins may exploit conditions in intracellular environments to facilitate translocation. For example, acidic pH of endocytic vesicles might dlow exposure of hydrophobic domains that associate with membranes, a necessary initial step in membrane translocation. SLT-1 was used to determine if this proposed mechanism was a general feature of all members of this family of toxins in tems of their mode of membrane insertion and uansIocation. Fluorescence spectroscopy has revealed that Ttp-34 in SLT-1 B subunit is perturbed at pH lcvels nomally found in endocytic and lysosomal vesicles. This effect was further characterized using circular dichroism. solid-phase receptor binding assays and gel permeation chromatography. The results support the conclusion that the çonformauond change observed with fluorescence studies is a local stmctunl effect and that the secondaiy and tertiary structures of the B subunit remain unaltered during a pH transition between pH 7 and pH 4. Moreover, studies carried out with the holotoxin indicated that the smcture of the toxh rernains largely unaffected by acidic pH in relation to neuual pH. The effects of other intraceUular microenvironments on SLT-1 translocation were investigated. Hydropathy profües of the A subunits of SLT-I revealed the presence of a hydrophobic domain between residues 220 and 246 flanked by positively charged amino acids that resembles the composition of signal sequences and trammembrane domains of integral membrane proteins. Studies with synthetic vesicles containing acidic lipids, such as phosphatidyl glycerol. have shown that synthrtic peptides corresponding to this region of the A 1 chain, can spontaneously insert into membrane vesicles. Our hypothesis is that this region may function in a similar way within the intact Al chah once localized in the ER. It is therefore concluded that acidic pH alone is not capable of eliciting a structurai change in internalized SLT-1. Rather. other intracellular processes, such as proteolytic processing and disulfide reduction, may be involved in exposing the hydrophobic C- terminus of the Al chain. The exposed domain may then insert into the lumenal side of the endoplasmic reticulum membrane as an initial step in membrane translocation. Furthexmore. factors endogenous to the ER. such as those involved in signal-sequence processing, protein folding and degradation, may play a role in the translocation of the A chah of SLT-1 across the ER membrane. ... lll ACKNO WLEDGMENTS This body of work is the result of the collective efforts of many individuals. I am grateful for the efforts and contributions of my supervisor, Dr. Jean Gariepy. The present frame of my scient& thinking was moulded by his relentless pursuit of excellence in reseuch. His patience provided me with the independence in the laboratory that 1 needed and his guidance ailowed me to successfully complete of my work 1 also wish to thank members of my student supervisory cornmittee, Dr. David Rose and Dr. Cheryl Arrowsmith for their concise encouragement, support and helpful discussions; my pst and present partners in the laboratory for making my stay stimulating and pleasant both at work and during evening discussions in bars. Without their efforts, 1 would have probably saved more money and my liver would be in a better state of health. They are : Beth Boyd, Bruce Carpick, Jim Ferguson, Francesca Bahr, Rajiv Ayra, Deming Liu, Kate Sheldon. Eric Lacasse, Mark Bray, Devender Singh. Reza Kiarasch, Wai-May Lim, Stuart Bisland, Kim Kawarnura, Ray Reilly and Nancy Stokoe, and a special thanks to John Simard. 1 also iake this opportunity to thank our collaborators, Dr. Ioan Boggs and Godha Rangaraj (University of Toronto), for the EPR work presented in chapter 4; Dr. Robert Hodges and Mr. Lome Burke (Department of Biochemistry, University of Alberta) for perfoming rnass spectrometry on the purified peptides and, Dr. Avi Chakrabartty for his help and access to his circular dichroism spectrometer and fluorometer. Finally. I would like to acknowledge Ms. Tanuja Chitnis and Dr. David Isenman for their help in the early stages of the work presented in chapter 1 as well as Drs. Penelope Stein and Randall Read for providing us with the crystûl coordinates for the B subunit of Shiga-like toxin 1. TABLE OF CONTENTS List of Tables List of Figures List of Abbreviations CHAPTER 1 Introduction .............................................................................. 1.1 The Role of Shiga-like Toxins in Disease ...................................... 1.2 The Structure of Shiga-like Toxin 1 ............................................. 1.2.1 The Smcture and Function of Shiga -1ike Toxin 1 A subunit ....... 1.2.2 The Structure of Shiga-like Toxin 1 B subunit ........................ 1.3 The Receptor of Shiga-like Toxin 1 .............................................. 1.4 Receptor-Mediated Endocytosis of Bound Toxin ............................. 1.5 Stnictural and Functional Homologies with other Toxins .................... 1.6 Goals and Objectives .............................................................. CHAPTER 2 Experimzntal Methods 2.1 Biochernicd Methods Purification of SLT-1 .................................................. Purification of SLT-1 B subunit ...................................... Purification of the synthetic peptides .............................. .. EIectroelution of SLT-1 A subunit .................................. Radiolabeling of SLT-1 and SLT-1 B subunit ....................... Gb3 solid phase binding assay ........................................ 2.1.7 Spin-labeling of ShTA(220-246) ..................................... 2.1.8 Preparation of lipid vesicles ........................................... 2.1.9 Binding of radiolabeled peptide to lipid vesicles .................... 2.1.10 Total Phosphorus Assay ............................................... 2.1.1 1 Amino acid analysis .................................................... 2.2 Characterization of Purified SLT-1 and its B subunit 2.2.1 Polyacrylamide gel electrophoresis ................................... 2.2.2 Western blot analysis ................................................... 2.2.3 Cytotoxicity assay ...................................................... 2.2.4 Cell-free protein synthesis inhibition assay .......................... 2.2.5 Gel permeaiion c hromatography ...................................... 2.2.6 Calculation of the molar absorption coefficient of SLT-I .......... 2.3 Immunological Methods 2.3.1 Generation of rabbit Anti-SLT-1 A subunit antisera ............... 2.3.2 Detection of rabbit anti-SLT-1 antibodies by ELISA ............... 2.4 Biophysical Methods 2.4.1 Fluorescence Spec troscopy ............................................ 2.4.2 Circular Dichroism ............................. .. ...........*...... 2.4.3 EPR measurements ..................................................... CHAPTER 3 Local Conformational Change in the B subunit of Shiga-like Toxin I at Endosomal pH 3.1 Introduction ........................................................................ 55 3.2 ResuIts and Discussion ..................................................... 59 3.2-1 The fluorescence of uyptophan-34 is perturbed at endosomal pH .......................... ........ ...-......-..-.-.... 3.2.2 The structure of the B-subunit is graduaily altered by pH conditions ranging from pH 2 to 4.5 ............................. 3.2.3 The tertiary
Recommended publications
  • ADP-Ribosylation with Clostridium Perfringens Iota Toxin
    Biochem. J. (1990) 266, 335-339 (Printed in Great Britain) 335 Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin Udo GEIPEL, Ingo JUST and Klaus AKTORIES* Rudolf-Buchheim-Institut fur Pharmakologie der Universitat GieBen, Frankfurterstr. 107, D-6300 GieBen, Federal Republic of Germany Clostridium perfringens iota toxin belongs to a novel family of actin-ADP-ribosylating toxins. The effects of ADP-ribosylation of skeletal muscle actin by Clostridium perfringens iota toxin on cytochalasin D- stimulated actin ATPase activity was studied. Cytochalasin D stimulated actin-catalysed ATP hydrolysis maximally by about 30-fold. ADP-ribosylation of actin completely inhibited cytochalasin D-stimulated ATP hydrolysis. Inhibition of ATPase activity occurred at actin concentrations below the critical concentration (0.1 /iM), at low concentrations of Mg2" (50 ItM) and even in the actin-DNAase I complex, indicating that ADP-ribosylation of actin blocks the ATPase activity of monomeric actin and -that the inhibitory effect is not due to inhibition of the polymerization of actin. INTRODUCTION perfringens type E strain CN5063, which was kindly donated by Dr. S. Thorley (Wellcome Biotech, Various bacterial ADP-ribosylating toxins modify Beckenham, Kent, U.K.) essentially according to the pro- regulatory GTP-binding proteins, thereby affecting cedure described (Stiles & Wilkens, 1986). Cytochalasin eukaryotic cell function. Pertussis toxin and cholera D was obtained from Sigma (Deisenhofen, Germany). toxin ADP-ribosylate GTP-binding proteins involved in DNAase I was a gift from Dr. H. G. Mannherz transmembrane signal transduction (for a review, see (Marburg, Germany). [oc-32P]ATP, [y-32P]ATP and Pfeuffer & Helmreich, 1988).
    [Show full text]
  • STEC) Detection in Food Shiga Toxin-Producing Escherichia Coli (STEC) Are Synonymous with Verocytotoxigenic Escherichia Coli (VTEC)
    Report of the Scientific Committee of the Food Safety Authority of Ireland 2019 Advice on Shiga toxin-producing Escherichia coli (STEC) detection in food Shiga toxin-producing Escherichia coli (STEC) are synonymous with verocytotoxigenic Escherichia coli (VTEC). Similarly, stx genes are synonymous with vtx genes. The terms STEC and stx have been used throughout this report. Report of the Scientific Committee of the Food Safety Authority of Ireland Advice on Shiga toxin-producing Escherichia coli (STEC) detection in food Published by: Food Safety Authority of Ireland The Exchange, George’s Dock, IFSC Dublin 1, D01 P2V6 Tel: +353 1 817 1300 Email: [email protected] www.fsai.ie © FSAI 2019 Applications for reproduction should be made to the FSAI Information Unit ISBN 978-1-910348-22-2 Report of the Scientific Committee of the Food Safety Authority of Ireland CONTENTS ABBREVIATIONS 3 EXECUTIVE SUMMARY 5 GENERAL RECOMMENDATIONS 8 BACKGROUND 9 1. STEC AND HUMAN ILLNESS 11 1.1 Pathogenic Escherichia coli . .11 1.2 STEC: toxin production.............................................12 1.3 STEC: public health concern . 13 1.4 STEC notification trends . .14 1.5 Illness severity ....................................................16 1.6 Human disease and STEC virulence ..................................17 1.7 Source of STEC human infection . 22 1.8 Foodborne STEC outbreaks .........................................22 1.9 STEC outbreaks in Ireland . 24 2. STEC METHODS OF ANALYSIS 28 2.1 Detection method for E. coli O157 in food . .29 2.2 PCR-based detection of STEC O157 and non-O157 in food.............29 2.3 Discrepancies between PCR screening and culture-confirmed results for STEC in food ............................................32 2.4 Alternative methods for the detection and isolation of STEC .
    [Show full text]
  • Neutralizing Equine Anti-Shiga Toxin
    al of D urn ru Jo g l D a e Yanina et al., Int J Drug Dev & Res 2019, 11:3 n v o e i l t o International Journal of Drug Development a p n m r e e e e t n n n n n I I t t t a n h d c r R a e e s and Research Research Article Preclinical Studies of NEAST (Neutralizing Equine Anti-Shiga Toxin): A Potential Treatment for Prevention of Stec-Hus Hiriart Yanina1,2, Pardo Romina1, Bukata Lucas1, Lauché Constanza2, Muñoz Luciana1, Berengeno Andrea L3, Colonna Mariana1, Ortega Hugo H3, Goldbaum Fernando A1,2, Sanguineti Santiago1 and Zylberman Vanesa1,2* 1Inmunova S.A., San Martin, Buenos Aires, Argentina 2National Council for Scientific and Technical Research (CONICET) Center for Comparative Medicine, Institute of Veterinary Sciences of the Coast (ICiVetLitoral), Argentina 3National University of the Coast (UNL)/Conicet, Esperanza, Santa Fe, Argentina *Corresponding author: Zylberman Vanesa, Inmunova S.A. 25 De Mayo 1021, CP B1650HMP, San Martin, Buenos Aires, Argentina, Interno 6053, Tel: +54-11- 2033-1455; E-mail: [email protected] Received July 29, 2019; Accepted August 30, 2019; Published Sepetmber 07, 2019 Abstract STEC-HUS is a clinical syndrome characterized by the triad of thrombotic microangiopathy, thrombocytopenia and acute kidney injury. Despite the magnitude of the social and economic problems caused by STEC infections, there are currently no specific therapeutic options on the market. HUS is a toxemic disorder and the therapeutic effect of the early intervention with anti-toxin neutralizing antibodies has been supported in several animal models.
    [Show full text]
  • Enterohemolysin Operon of Shiga Toxin-Producing Escherichia Coli
    FEBS 26317 FEBS Letters 524 (2002) 219^224 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Enterohemolysin operon of Shiga toxin-producing Escherichiaprovided by coliElsevier :- Publisher Connector a virulence function of in£ammatory cytokine production from human monocytes Ikue Taneike, Hui-Min Zhang, Noriko Wakisaka-Saito, Tatsuo Yamamotoà Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibanchou, Asahimachidori, Niigata, Japan Received 5 April 2002; revised 14 June 2002; accepted 19 June 2002 First published online 8 July 2002 Edited by Veli-Pekka Lehto Stx [6]. In the case of the outbreak strains in Japan in 1996, Abstract Shiga toxin-producing Escherichia coli (STEC) is associated with hemolytic uremic syndrome (HUS). Although more than 98% of STEC were positive for enterohemolysin most clinical isolates ofSTEC produce hemolysin (called en- [8]. terohemolysin), the precise role ofenterohemolysin in the patho- Enterohemolysin and K-hemolysin (which is produced from genesis ofSTEC infectionsis unknown. Here we demonstrated approximately 50% of E. coli isolates from extraintestinal in- that E. coli carrying the cloned enterohemolysin operon (hlyC, fections [9], or from porcine STEC strains [6]) are members of A, B, D genes) from an STEC human strain induced the pro- the RTX family, associated with the ATP-dependent HlyB/ duction ofinterleukin-1 L (IL-1L) through its mRNA expression HlyD/TolC secretion system through which hemolysin K but not tumor necrosis factor- from human monocytes. No (HlyA) is secreted across the bacterial membranes. Both the L IL-1 release was observed with an enterohemolysin (HlyA)- enterohemolysin and K-hemolysin operons consist of the hlyC, negative, isogenic E.
    [Show full text]
  • Safe Handling of Acutely Toxic Chemicals Safe Handling of Acutely
    Safe Handling of Acutely Toxic Chemicals , Mutagens, Teratogens and Reproductive Toxins October 12, 2011 BSBy Sco ttBthlltt Batcheller R&D Manager Milwaukee WI Hazards Classes for Chemicals Flammables • Risk of ignition in air when in contact with common energy sources Corrosives • Generally destructive to materials and tissues Energetic and Reactive Materials • Sudden release of destructive energy possible (e.g. fire, heat, pressure) Toxic Substances • Interaction with cells and organs may lead to tissue damage • EfftEffects are t tilltypically not general ltllti to all tissues, bttbut target tdted to specifi c ones • Examples: – Cancers – Organ diseases – Inflammation, skin rashes – Debilitation from long-term Poison Acute Cancer, health or accumulation with delayed (ingestion) risk reproductive risk emergence 2 Toxic Substances Are All Around Us Pollutants Natural toxins • Cigare tte smo ke • V(kidbt)Venoms (snakes, spiders, bees, etc.) • Automotive exhaust • Poison ivy Common Chemicals • Botulinum toxin • Pesticides • Ricin • Fluorescent lights (mercury) • Radon gas • Asbestos insulation • Arsenic and heavy metals • BPA ((pBisphenol A used in some in ground water plastics) 3 Application at UNL Chemicals in Chemistry Labs Toxin-producing Microorganisms • Chloro form • FiFungi • Formaldehyde • Staphylococcus species • Acetonitrile • Shiga-toxin from E. coli • Benzene Select Agent Toxins (see register) • Sodium azide • Botulinum neurotoxins • Osmium/arsenic/cadmium salts • T-2 toxin Chemicals in Biology Labs • Tetrodotoxin • Phenol
    [Show full text]
  • Shiga Toxin E. Coli Detection Differentiation Implications for Food
    SL440 Shiga Toxin-Producing Escherichia coli: Detection, Differentiation, and Implications for Food Safety1 William J. Zaragoza, Max Teplitski, and Clifton K. Fagerquist2 Introduction for the effective detection of the Shiga-toxin-producing pathogens in a variety of food matrices. Shiga toxin is a protein found within the genome of a type of virus called a bacteriophage. These bacteriophages can There are two types of Shiga toxins—Shiga toxin 1 (Stx1) integrate into the genomes of the bacterium E. coli, giving and Shiga toxin 2 (Stx2). Stx1 is composed of several rise to Shiga toxin-producing E. coli (STEC). Even though subtypes knows as Stx1a, Stx1c, and Stx1d. Stx2 has seven most E. coli are benign or even beneficial (“commensal”) subtypes: a–g. Strains carrying all of the Stx1 subtypes affect members of our gut microbial communities, strains of E. humans, though they are less potent than that of Stx2. Stx2 coli carrying Shiga-toxin encoding genes (as well as other subtypes a,c, and d are frequently associated with human virulence determinants) are highly pathogenic in humans illness, while the other subtypes affect different animals. and other animals. When mammals ingest these bacteria, Subtypes Stx2b and Stx2e affect neonatal piglets, while STECs can undergo phage-driven lysis and deliver these target hosts for Stx2f and Stx2g subtypes are not currently toxins to mammalian guts. The Shiga toxin consists of an known (Fuller et al. 2011). Stx2f was originally isolated A subunit and 5 identical B subunits. The B subunits are from feral pigeons (Schmidt et al. 2000), and Stx2g was involved in binding to gut epithelial cells.
    [Show full text]
  • Impact of Bacterial Toxins in the Lungs
    toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333
    [Show full text]
  • National Shiga Toxin-Producing Escherichia Coli (STEC) Surveillance
    National Enteric Disease Surveillance: STEC Surveillance Overview Surveillance System Overview: National Shiga toxin-producing Escherichia coli (STEC) Surveillance Shiga toxin-producing Escherichia coli (STEC) are estimated to cause more than 265,000 illnesses each year in the United States, with more than 3,600 hospitalizations and 30 deaths (1). STEC infections often cause diarrhea, sometimes bloody. Some patients with STEC infection develop hemolytic uremic syndrome (HUS), a severe complication characterized by renal failure, hemolytic anemia, and thrombocytopenia that can be fatal. Most outbreaks of STEC infection and most cases of HUS in the United States have been caused by STEC O157. Non- O157 STEC have also caused US outbreaks. Although all STEC infections are nationally notifiable, for several reasons many cases are likely not recognized (2). Not all persons ill with STEC infection seek medical care, healthcare providers may not obtain a specimen for laboratory diagnosis, or the clinical diagnostic laboratory may not perform the necessary diagnostic tests. Accounting for under-diagnosis and under-reporting, an estimated 96,534 STEC O157 and 168,698 non-O157 infections occur each year (1). STEC transmission occurs through consumption of contaminated foods, ingestion of contaminated water, or direct contact with infected persons (e.g., in child-care settings) or animals or their environments. Colored scanning electron micrograph (SEM) of Escherichia coli bacteria. National STEC surveillance data are collected through passive surveillance of laboratory-confirmed human STEC isolates in the United States. Clinical diagnostic laboratories submit STEC O157 isolates and Shiga toxin-positive broths to state and territorial public health laboratories, where they are further characterized.
    [Show full text]
  • 2015 Biotoxin Illness
    Understanding Toxins Jyl Burgener Midwest Area Biosafety Network (MABioN) MABioN February 18, 2016 Jyl Burgener, M.S. MBA, RBP, CBSP Topics 1. Definition and Characteristics of Toxins 2. Regulations Regarding Toxins 3. Inactivation of Toxins 4. Human Health Considerations of Toxins 2 Jyl Burgener, M.S. MBA, RBP, CBSP Definition of Toxins Simple definition of toxin: a poisonous substance produced by a living thing Full definition of toxin: • a poisonous substance • a specific product of the metabolic activities of a living organism • usually very unstable • notably toxic when introduced into the tissues, and • typically capable of inducing antibody formation 3 Jyl Burgener, M.S. MBA, RBP, CBSP Political Definition North Atlantic Treaty Organization (NATO) vs Warsaw Pact Biological or chemical agent? NATO opted for biological agent, and the Warsaw Pact, like most other countries in the world, for chemical agent. According to an International Committee of the Red Cross review of the Biological Weapons Convention: "Toxins are poisonous products of organisms; unlike biological agents, they are inanimate and not capable of reproducing themselves", "Since the signing of the Convention, there have been no disputes among the parties regarding the definition of biological agents or toxins" 4 Jyl Burgener, M.S. MBA, RBP, CBSP Biotoxin The term "biotoxin" is sometimes used to explicitly confirm the biological origin. Biotoxins can be further classified into: fungal biotoxins, or short mycotoxins, microbial biotoxins, plant biotoxins, short phytotoxins and animal biotoxins. 5 Jyl Burgener, M.S. MBA, RBP, CBSP Characteristics of Toxins Extremely potent Often mixtures Directly damage host tissues Disable the immune and nervous systems 6 Jyl Burgener, M.S.
    [Show full text]
  • Combined Action of Shiga Toxin Type 2 and Subtilase Cytotoxin in the Pathogenesis of Hemolytic Uremic Syndrome
    toxins Article Combined Action of Shiga Toxin Type 2 and Subtilase Cytotoxin in the Pathogenesis of Hemolytic Uremic Syndrome Romina S. Álvarez 1, Fernando D. Gómez 1, Elsa Zotta 1,2, Adrienne W. Paton 3, James C. Paton 3, Cristina Ibarra 1 , Flavia Sacerdoti 1 and María M. Amaral 1,* 1 Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; [email protected] (R.S.Á.); [email protected] (F.D.G.); [email protected] (E.Z.); [email protected] (C.I.); [email protected] (F.S.) 2 Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina 3 Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia; [email protected] (A.W.P.); [email protected] (J.C.P.) * Correspondence: [email protected]; Tel.: +54-11-5285-3280 Abstract: Shiga toxin-producing E. coli (STEC) produces Stx1 and/or Stx2, and Subtilase cytotoxin (SubAB). Since these toxins may be present simultaneously during STEC infections, the purpose of this work was to study the co-action of Stx2 and SubAB. Stx2 + SubAB was assayed in vitro on monocultures and cocultures of human glomerular endothelial cells (HGEC) with a human proximal tubular epithelial cell line (HK-2) and in vivo in mice after weaning. The effects in vitro of both toxins, co-incubated and individually, were similar, showing that Stx2 and SubAB contribute similarly to renal cell damage.
    [Show full text]
  • Toxins and the Gut: Role in Human Disease a Fasano
    iii9 PAPER Gut: first published as 10.1136/gut.50.suppl_3.iii9 on 1 May 2002. Downloaded from Toxins and the gut: role in human disease A Fasano ............................................................................................................................. Gut 2002;50(Suppl III):iii9–iii14 Bacterial enteric infections exact a heavy toll on the TOXINS THAT ACTIVATE ENTEROCYTE human population, particularly among children. Despite SIGNAL PATHWAYS Intestinal cells operate through three well estab- the explosion of knowledge on the pathogenesis of lished intracellular signal transduction pathways enteric diseases experienced during the past decade, to regulate water and electrolyte fluxes across the the number of diarrhoeal episodes and human deaths intestinal mucosa: cyclic adenosine monophos- phate (cAMP); cyclic guanosine monophosphate reported worldwide remains of apocalyptic dimensions. (cGMP); and calcium dependent pathways (fig However, our better understanding of the pathogenic 1). Recently, a fourth pathway involving nitric mechanisms involved in the onset of diarrhoea is finally oxide (NO) has been described. leading to preventive interventions, such as the cAMP development of enteric vaccines, that may have a An extremely heterogeneous group of microor- significant impact on the magnitude of this human ganisms, Escherichia coli encompass almost all features of possible interaction between intestinal plague. The application of a multidisciplinary approach microflora and the host, ranging from a role of to study bacterial pathogenesis, along with the recent mere harmless presence to that of highly patho- sequencing of entire microbial genomes, have made genic organisms. In fact, the E coli species is made up of many strains that profoundly differ from possible discoveries that are changing the way scientists each other in terms of biological characteristics view the bacterium–host interaction.
    [Show full text]
  • Effects of Bacterial Lipopolysaccharide and Shiga Toxin on Induced
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459335; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Effects of bacterial lipopolysaccharide and Shiga Toxin on induced Pluripo- tent Stem Cell-derived Mesenchymal Stem Cells Daiana Martire-Greco a;d∗‡ Alejandro La Greca b∗ Luis Castillo Montanez˜ a Celeste Biani b Antonella Lombardi b Federico Birnberg-Weiss a Alessandra Norris b Flavia Sacerdoti c;d Mar´ıa Marta Amaral c;d Nahuel Rodrigues-Rodriguez a Jose Ramon´ Pittaluga a Veronica´ Alejandra Furmento b Veronica´ Ines´ Landoni a;d Santiago Gabriel Miriuka b;d Carlos Luzzani b;d Gabriela Cristina Fernandez´ a;d aLaboratorio de Fisiolog´ıa de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina. bLaboratorio de Investigacion´ Aplicada a Neurociencias (LIAN), FLENI-CONICET, Buenos Aires, Argentina. cLaboratorio de Fisiopatogenia, Instituto de Fisiolog´ıa y Biof´ısica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiolog´ıa, Facultad de Medicina, Buenos Aires (Ar- gentina). dConsejo Nacional de Investigaciones Cient´ıficas y Tecnicas´ (CONICET), Buenos Aires, Ar- gentina. ∗ These authors contributed equally to this work z Corresponding author: [email protected] Lead Contact Daiana Martire-Greco Running title iPSC-MSC response to LPS and Stx. Competing interest The authors declare no competing interest. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459335; this version posted September 7, 2021.
    [Show full text]