SWISS BIOINFORMATICS a Newsletter Published Twice a Year by SIB Swiss Institute of Bioinformatics July 2009

Total Page:16

File Type:pdf, Size:1020Kb

SWISS BIOINFORMATICS a Newsletter Published Twice a Year by SIB Swiss Institute of Bioinformatics July 2009 SWISS BIOINFORMATICS A newsletter published twice a year by SIB Swiss Institute of Bioinformatics July 2009 Welcome It is with pleasure that I introduce Swiss Bioinformatics Contents which we will issue twice a year. In this inaugural edition, we welcome four new Group Leaders and their Groups to Welcome 1 SIB, we introduce the new President of the SIB Foundation Snippets 1 Council and a new member of the SIB Executive Board, and SIB welcomes new Group Leaders 2 we congratulate the winners of the 2009 SIB Awards. The Editorial 3 main scientific article showcases the work from the MOSAIC group of Ivo Research in brief 4 Sbalzarini from the first half of 2009. [BC]2 2009 6 Research spotlight 6 Since the beginning of this year we have introduced a new SIB logo, the new-look SIB institutional website has gone online at www.isb-sib.ch, and now, with the first edition of our external newsletter, we launch a regular information channel with external stakeholders. I hope that you find this newsletter an informative and interesting read! Ron Appel Director, SIB Swiss Institute of Bioinformatics Snippets ● Martine Brunschwig Graf, Swiss National Councillor from Geneva, has been nominated to the SIB Executive Board from January 1, 2009. She replaces Christiane Langen- Martine Brunschwig Graf Peter Malama berger who left the Executive Board at the end of Decem- ber 2008 after a decade-long association with the SIB. ● The SIB Swiss Institute of Bioinformatics is pleased to announce the re-launch of GlycoSuiteDB http:// ● Peter Malama became the new President of the SIB glycosuitedb.expasy.org, a product of Tyrian Diagnostics Foundation Council on July 1, replacing Johannes Ltd (formerly Proteome Systems Ltd). The glycan data- Randegger who held the post for three years. base is available in open access mode on the ExPASy website. ● The new Centre Universitaire de Bioinformatique (CUB) at the University of Geneva has been approved by uni- ● The Concept Web Alliance CWA, an international non- versity administration. It will coordinate and deliver pre- profit organisation aimed at harnessing semantic web ap- and post-graduate bioinformatics courses, strengthen the proaches to disseminate life science data, held its inaugu- coordination of bioinformatics research, and ral meeting in mid-May. A goal of the alliance facilitate access to bioinformatics tools and is to pull together existing academic projects, databases for other Unige groups. as well as seek new ideas and methods to address the challenges associated with ● Ron Appel and Ernest Feytmans have high-volume scholarly and professional data edited a new book, Bioinformatics: A Swiss production, storage, interoperability, and Perspective. It covers both research and analyses. Founding members of the CWA major infrastructure efforts in genome and include Barend Mons of the Erasmus Medi- gene expression analysis, investigations cal Centre at the University of Rotterdam on proteins and proteomes, evolutionary and Leiden University Medical Center, and bioinformatics and modelling of biological Amos Bairoch and Frédérique Lisacek from systems. Bioinformatics: A Swiss Perspec- the Swiss Institute of Bioinformatics. tive, published by World Scientific press, is available at www.worldscibooks.com/ ● Coming events: 8th [BC]2 Basel Compu- lifesci/7181.html and other outlets such as tational Biology Conference June 24-25, www.amazon.com. 2010. 2 SWISS BIOINFORMATICS SIB welcomes new Group Leaders Welcome to four new Group Leaders, whose nominations University, New York. Simon was a post-doc fellow in the were ratified by the SIB Foundation Council on July 1, 2009. Structural Biology Division, Biozentrum of the University The SIB now consists of 29 groups and 320 members and of Basel from 2003 to 2006, and subsequently he was collaborators. At the same time, the SIB has announced a research scientist in Olivier Michielin’s Molecular Modelling new group for functional characterisation of human proteins Group at the SIB. Since April 2008, he is Assistant Professor and a new head of Swiss-Prot. SNF in core programs, Computational & Systems Biology and Structural Biology & Biophysics, at the Biozentrum, UniBS. Canadian by origin, Simon has received numerous Niko Beerenwinkel academic awards and fellowships and he has authored D-BSSE, ETH Zurich, studied more than twenty research articles. mathematics and biology at the University of Bonn and computer His group focuses on the structure-function relationship of science at Saarland University in membrane proteins. By explicitly simulating the dynamics Saarbrücken where he obtained of the proteins in their physiological environment, the group his PhD summa cum laude. He has aims to elucidate the microscopic mechanisms that underlie worked as Research Assistant at the protein functions. The approach thus complements the Max Planck Institute for Informatics, information obtained by X-ray crystallography which can only before doing a PostDoc at the University of California at provide limited information on the dynamics and energetics Berkeley from 2004 to 2006, and at Harvard University from of proteins. This simulation work, while being quite different 2006 to 2007. He joined ETH Zurich in 2007 as Assistant in nature compared to the work pursued in the -omics fields, Professor for Computational Biology in the Department shares the goal of building a strong theoretical framework of Biosystems Science and Engineering and heads the to advance our understanding and interpretation of large Computational Biology Group (CBG). He is author of experimental datasets. more than 40 research articles on computational biology, bioinformatics, biostatistics, virology, and cancer biology The long-term goal of the research pursued in the labora- and was awarded the Otto Hahn Medal of the Max Planck tory of Simon Bernèche is to establish a bridge between Society and the Emmy Noether Fellowship of the German microscopic properties of membrane channel systems and National Science Foundation. macroscopic properties of single excitable cells. His research is at the interface of mathematics, statistics, See: Computational Biophysics Group www.isb-sib.ch/groups/ computer science, biology and medicine. His current re- basel/computational-biophysics-s-berneche.html search activities deal with applying computational methods to biomedical problems, namely using mathematical models to predict the behavior of biological systems and designing Dagmar Iber efficient algorithms to aid in the diagnosis and treatment of D-BSSE, ETH Zurich, studied diseases. Current research projects developed by his team mathematics and biochemistry in include the use of algorithms to analyse the HIV genome for Regensburg, Germany, Cambridge the selection of optimal drug treatment combinations, the and Oxford, UK. She holds Master use of deep sequencing to characterise the genetic diver- degrees and PhDs in both disciplines. sity of pathogen populations, the use of evolutionary models After three years as a Junior and statistics to study cancer progression, and the analy- Research Fellow in St John’s College, sis of host cellular pathways activated by viral or bacterial Oxford, Dagmar became a lecturer in infection to identify host proteins that could serve as potential Applied Mathematics at Imperial College London. Dagmar targets for future drug therapies. has joined ETH Zurich in 2008 after returning from an See: Computational Biology Group www.isb-sib.ch/groups/ investment bank where she worked as an oil option trader basel/computational-biology-group-n-beerenwinkel.html for one year. Dagmar Iber’s research involves the development of quan- Simon Bernèche titative, predictive models for cellular signaling networks. Biozentrum, University of Basel, has Close collaborations with experimental laboratories permit a Bachelor of Engineering in physics a cycle of model testing and improving. The ultimate goal and bio­­medical enginee ring from the of her research is a comprehensive understanding of the École Polytechnique de Montréal dynamics and evolution of complex cellular signaling net- and a Masters in Biophysics from the works. Université de Montréal. He obtained See: Computational Biology Group www.isb-sib.ch/groups/ his PhD in physiology and biophysics basel/computational-biology-group-d-iber.html from Weill Medical College, Cornell July 2009 3 A new roadmap for Jacques Rougemont bioinformatics in Switzerland is head of the Bioinformatics and Bio- statistics Core Facility (BBCF) of the Bioinformatics resources are needed to sustain life EPFL School of Life Sciences since science research – biologists need bioinformaticians 2007 and does research on statistical to develop new methods and software and to maintain analysis of large-scale genomic data. large biological encyclopaedias in the form of curated He studied physics and mathematics databases. They also need the computational infra- at the University of Geneva and ob- structure to store and process their data, specialised tained his PhD in 1999, followed by high-level bioinformatics competencies and support postdoctoral training in numerical analysis and stochastic to analyse data and infer pertinent information that processes at the Mathematics Department, Heriot-Watt Univer- eventually will be used to develop innovative solutions sity in Edinburgh. He then worked on microarray data analysis to improve our daily lives. at the TAGC la boratory at INSERM, Marseille, before joining the SIB’s Vital-IT group as a computer analyst in 2004. Since the
Recommended publications
  • Article Reference
    Article Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines BABIC, Zeljana, et al. Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines. Reference BABIC, Zeljana, et al. Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines. eLife, 2019, vol. 8, p. e41676 DOI : 10.7554/eLife.41676 PMID : 30693867 Available at: http://archive-ouverte.unige.ch/unige:119832 Disclaimer: layout of this document may differ from the published version. 1 / 1 FEATURE ARTICLE META-RESEARCH Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research.
    [Show full text]
  • General Assembly and Consortium Meeting 2020
    EJP RD GA and Consortium meeting Final program EJP RD General Assembly and Consortium meeting 2020 Online September 14th – 18th Page 1 of 46 EJP RD GA and Consortium meeting Final program Program at a glance: Page 2 of 46 EJP RD GA and Consortium meeting Final program Table of contents Program per day ....................................................................................................................... 4 Plenary GA Session .................................................................................................................. 8 Parallel Session Pillar 1 .......................................................................................................... 10 Parallel Session Pillar 2 .......................................................................................................... 11 Parallel Session Pillar 3 .......................................................................................................... 14 Parallel Session Pillar 4 .......................................................................................................... 16 Experimental data resources available in the EJP RD ............................................................. 18 Introduction to translational research for clinical or pre-clinical researchers .......................... 21 Funding opportunities in EJP RD & How to build a successful proposal ............................... 22 RD-Connect Genome-Phenome Analysis Platform ................................................................. 26 Improvement
    [Show full text]
  • 2003 Mulder Nucl Acids Res {22
    The InterPro Database, 2003 brings increased coverage and new features Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, Alex Bateman, David Binns, Margaret Biswas, Paul Bradley, Peer Bork, et al. To cite this version: Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, et al.. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, Oxford University Press, 2003, 31 (1), pp.315-318. 10.1093/nar/gkg046. hal-01214149 HAL Id: hal-01214149 https://hal.archives-ouvertes.fr/hal-01214149 Submitted on 9 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. # 2003 Oxford University Press Nucleic Acids Research, 2003, Vol. 31, No. 1 315–318 DOI: 10.1093/nar/gkg046 The InterPro Database, 2003 brings increased coverage and new features Nicola J. Mulder1,*, Rolf Apweiler1, Teresa K. Attwood3, Amos Bairoch4, Daniel Barrell1, Alex Bateman2, David Binns1, Margaret Biswas5, Paul Bradley1,3, Peer Bork6, Phillip Bucher7, Richard R. Copley8, Emmanuel Courcelle9, Ujjwal Das1, Richard Durbin2, Laurent Falquet7, Wolfgang Fleischmann1, Sam Griffiths-Jones2, Downloaded from Daniel Haft10, Nicola Harte1, Nicolas Hulo4, Daniel Kahn9, Alexander Kanapin1, Maria Krestyaninova1, Rodrigo Lopez1, Ivica Letunic6, David Lonsdale1, Ville Silventoinen1, Sandra E.
    [Show full text]
  • MPGM: Scalable and Accurate Multiple Network Alignment
    MPGM: Scalable and Accurate Multiple Network Alignment Ehsan Kazemi1 and Matthias Grossglauser2 1Yale Institute for Network Science, Yale University 2School of Computer and Communication Sciences, EPFL Abstract Protein-protein interaction (PPI) network alignment is a canonical operation to transfer biological knowledge among species. The alignment of PPI-networks has many applica- tions, such as the prediction of protein function, detection of conserved network motifs, and the reconstruction of species’ phylogenetic relationships. A good multiple-network align- ment (MNA), by considering the data related to several species, provides a deep understand- ing of biological networks and system-level cellular processes. With the massive amounts of available PPI data and the increasing number of known PPI networks, the problem of MNA is gaining more attention in the systems-biology studies. In this paper, we introduce a new scalable and accurate algorithm, called MPGM, for aligning multiple networks. The MPGM algorithm has two main steps: (i) SEEDGENERA- TION and (ii) MULTIPLEPERCOLATION. In the first step, to generate an initial set of seed tuples, the SEEDGENERATION algorithm uses only protein sequence similarities. In the second step, to align remaining unmatched nodes, the MULTIPLEPERCOLATION algorithm uses network structures and the seed tuples generated from the first step. We show that, with respect to different evaluation criteria, MPGM outperforms the other state-of-the-art algo- rithms. In addition, we guarantee the performance of MPGM under certain classes of net- work models. We introduce a sampling-based stochastic model for generating k correlated networks. We prove that for this model if a sufficient number of seed tuples are available, the MULTIPLEPERCOLATION algorithm correctly aligns almost all the nodes.
    [Show full text]
  • Presentation Sams Patrick Ruch
    Genealogy… How can I relevantly answer the invitation from the SAMS’ medical librarians ? Special greetings to Tamara Morcillo and Isabelle de Kaenel ! 2 Today’s agenda 3 Count of bi-gram and tri-grams 4 … to support my presentation ! 5 Objective of text and data mining To support you like TDM helped me today ! 6 How text & data mining can support… ● … medical librarians ? ● … research data and open science ? [well covered by other speakers] ● … clinical knowledge ? 7 History ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics 8 Blind spot ● Empirical medicine Observation & Cooking [Mountains are made of stones] ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) • Overcome publication paywalls • Fight silos [researchers, clinicians, institutions…] • Empower patients • Establish circle of trust and clarify legal basis 9 Basis of clinical practice… ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) ! Evidence-based “holistic” (including phenotypes) personalized health ! 10 Basis of clinical practice… ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power Open Access, Open Science required ! ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) ! 11 How text & data mining can support… ● … medical librarians
    [Show full text]
  • Biological Databases an Introduction
    Biological databases an introduction By Dr. Erik Bongcam-Rudloff SLU 2017 Biological Databases ▪ Sequence Databases ▪ Genome Databases ▪ Structure Databases Sequence Databases ▪ The sequence databases are the oldest type of biological databases, and also the most widely used Sequence Databases ▪ Nucleotide: ATGC ▪ Protein: MERITSAPLG The nucleotide sequence repositories ▪ There are three main repositories for nucleotide sequences: EMBL, GenBank, and DDBJ. ▪ All of these should in theory contain "all" known public DNA or RNA sequences ▪ These repositories have a collaboration so that any data submitted to one of databases will be redistributed to the others. ▪ The three databases are the only databases that can issue sequence accession numbers. ▪ Accession numbers are unique identifiers which permanently identify sequences in the databases. ▪ These accession numbers are required by many biological journals before manuscripts are accepted. ▪ It should be noted that during the last decade several commercial companies have engaged in sequencing ESTs and genomes that they have not made public. Ideal minimal content of a « sequence » db Sequences !! Accession number (AC) References Taxonomic data ANNOTATION/CURATION Keywords Cross-references Documentation Example: Swiss-Prot entry Entry name Accession number sequence Protein name Gene name Taxonomy References Comments Cross-references Keywords Feature table (sequence description) Sequence database: example …a SWISS-PROT entry, in fasta format: >sp|P01588|EPO_HUMAN ERYTHROPOIETIN PRECURSOR -
    [Show full text]
  • Glycoprotein Hormone Receptors in Sea Lamprey
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2007 Glycoprotein hormone receptors in sea lamprey (Petromyzon marinus): Identification, characterization and implications for the evolution of the vertebrate hypothalamic-pituitary-gonadal/thyroid axes Mihael Freamat University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Freamat, Mihael, "Glycoprotein hormone receptors in sea lamprey (Petromyzon marinus): Identification, characterization and implications for the evolution of the vertebrate hypothalamic-pituitary-gonadal/ thyroid axes" (2007). Doctoral Dissertations. 395. https://scholars.unh.edu/dissertation/395 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. GLYCOPROTEIN HORMONE RECEPTORS IN SEA LAMPREY (PETROMYZON MARI Nil S): IDENTIFICATION, CHARACTERIZATION AND IMPLICATIONS FOR THE EVOLUTION OF THE VERTEBRATE HYPOTHALAMIC-PITUITARY-GONADAL/THYROID AXES BY MIHAEL FREAMAT B.S. University of Bucharest, 1995 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Biochemistry September, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3277139 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • CV: Amos Bairoch
    JST-ETHZ JointWS 2009 CV of Presenter Name (Underline Prof. Amos Bairoch the Family Name): Job Title: Group Leader Organization: Swiss Institute of Bioinformatics Major Field: Bioinformatics, Databases, Sequence Analysis Education: 1990: Ph.D. thesis, University of Geneva, Switzerland. Title: "PC/Gene: a protein and nucleic acid sequence analysis microcomputer package, PROSITE: a dictionary of sites and patterns in proteins, and SWISS-PROT: a protein sequence data bank"; 1983: Diploma (M. Sc.) in Biochemistry, University of Geneva, Switzerland; 1981: Licence (B. Sc.) in Chemistry, University of Geneva, Switzerland; 1981: Licence (B. Sc.) in Biochemistry, University of Geneva, Switzerland; 1977: Maturité scientifique, ‘college de Genève’. Job history: Professor of Bioinformatics and Director of the Department of Structural Biology and Bioinformatics at the University of Geneva, Amos Bairoch is head of the CALIPHO group of the Swiss Institute of Bioinformatics. Until June 2009, Amos was head of the Swiss-Prot group which develops the Swiss-Prot knowledgebase as well as PROSITE, a database of protein families and domains and ENZYME, a database of information on the nomenclature of enzymes. He is also co-responsible for the development of ExPASy, the world’s first web site dedicated to protein molecular biology. Amos Bairoch’s main work lies in the field of protein sequence analysis and the development of databases and software tools for this purpose. His first project, as a Ph.D student, was the development of PC/Gene, an MS-DOS based software package for the analysis of protein and nucleotide sequences. While working on PC/Gene he started to develop an annotated protein sequence database, which became Swiss-Prot, first released in July 1986.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Structural genomics is the largest contributor of novel structural leverage. Permalink https://escholarship.org/uc/item/82z2z1fg Journal Journal of structural and functional genomics, 10(2) ISSN 1345-711X Authors Nair, Rajesh Liu, Jinfeng Soong, Ta-Tsen et al. Publication Date 2009-04-01 DOI 10.1007/s10969-008-9055-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Struct Funct Genomics (2009) 10:181–191 DOI 10.1007/s10969-008-9055-6 Structural genomics is the largest contributor of novel structural leverage Rajesh Nair Æ Jinfeng Liu Æ Ta-Tsen Soong Æ Thomas B. Acton Æ John K. Everett Æ Andrei Kouranov Æ Andras Fiser Æ Adam Godzik Æ Lukasz Jaroszewski Æ Christine Orengo Æ Gaetano T. Montelione Æ Burkhard Rost Received: 15 November 2008 / Accepted: 8 December 2008 / Published online: 5 February 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract The Protein Structural Initiative (PSI) at the US structures for protein sequences with no structural repre- National Institutes of Health (NIH) is funding four large- sentative in the PDB on the date of deposition). The scale centers for structural genomics (SG). These centers structural coverage of the protein universe represented by systematically target many large families without structural today’s UniProt (v12.8) has increased linearly from 1992 to coverage, as well as very large families with inadequate 2008; structural genomics has contributed significantly to structural coverage. Here, we report a few simple metrics the maintenance of this growth rate.
    [Show full text]
  • 2018 Metrics from the HUPO Human Proteome Project † ● ‡ § ∥ Gilbert S
    Perspective Cite This: J. Proteome Res. 2018, 17, 4031−4041 pubs.acs.org/jpr Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project † ● ‡ § ∥ Gilbert S. Omenn,*, , Lydie Lane, Christopher M. Overall, Fernando J. Corrales, ⊥ # ¶ ∇ ○ Jochen M. Schwenk, Young-Ki Paik, Jennifer E. Van Eyk, Siqi Liu, Michael Snyder, ⊗ ● Mark S. Baker, and Eric W. Deutsch † Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States ‡ CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland § Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, BC V6T 1Z3, Canada ∥ Centro Nacional de Biotecnologia (CSIC), Darwin 3, 28049 Madrid, Spain ⊥ Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavagen̈ 23A, 17165 Solna, Sweden # Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, Korea ¶ Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States ∇ Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, United States ○ Department
    [Show full text]
  • Avancesin Systemsand Synthetic Biology
    Proceedings of The Nice Spring School on Avancesin Systemsand Synthetic Biology March 25th - 29th, 2013 Edited by Patrick Amar, Franc¸ois Kep´ es,` Vic Norris “But technology will ultimately and usefully be better served by following the spirit of Eddington, by attempting to provide enough time and intellectual space for those who want to invest themselves in exploration of levels beyond the genome independently of any quick promises for still quicker solutions to extremely complex problems.” Strohman RC (1977) Nature Biotech 15:199 FOREWORD Systems Biology includes the study of interaction networks and, in particular, their dy- namic and spatiotemporal aspects. It typically requires the import of concepts from across the disciplines and crosstalk between theory, benchwork, modelling and simu- lation. The quintessence of Systems Biology is the discovery of the design principles of Life. The logical next step is to apply these principles to synthesize biological systems. This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep- tion and construction of complex systems based on, or inspired by, biology, and endowed with functions that may be absent in Nature. Just such a multi-disciplinary group of scientists has been meeting regularly at Geno- pole, a leading centre for genomics in France. This, the Epigenomics project, is divided into five subgroups. The GolgiTop subgroup focuses on membrane deformations involved in the functionning of the Golgi. The Hyperstructures subgroup focuses on cell division, on the dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are extended multi-molecule assemblies that serve a particular function). The Observability subgroup addresses the question of which models are coherent and how can they best be tested by applying a formal system, originally used for testing computer programs, to an epigenetic model for mucus production by Pseudomonas aeruginosa, the bacterium involved in cystic fibrosis.
    [Show full text]
  • CV Burkhard Rost
    Burkhard Rost CV BURKHARD ROST TUM Informatics/Bioinformatics i12 Boltzmannstrasse 3 (Rm 01.09.052) 85748 Garching/München, Germany & Dept. Biochemistry & Molecular Biophysics Columbia University New York, USA Email [email protected] Tel +49-89-289-17-811 Photo: © Eckert & Heddergott, TUM Web www.rostlab.org Fax +49-89-289-19-414 Document: CV Burkhard Rost TU München Affiliation: Columbia University TOC: • Tabulated curriculum vitae • Grants • List of publications Highlights by numbers: • 186 invited talks in 29 countries (incl. TedX) • 250 publications (187 peer-review, 168 first/last author) • Google Scholar 2016/01: 30,502 citations, h-index=80, i10=179 • PredictProtein 1st Internet server in mol. biol. (since 1992) • 8 years ISCB President (International Society for Computational Biology) • 143 trained (29% female, 50% foreigners from 32 nations on 6 continents) Brief narrative: Burkhard Rost obtained his doctoral degree (Dr. rer. nat.) from the Univ. of Heidelberg (Germany) in the field of theoretical physics. He began his research working on the thermo-dynamical properties of spin glasses and brain-like artificial neural networks. A short project on peace/arms control research sketched a simple, non-intrusive sensor networks to monitor aircraft (1988-1990). He entered the field of molecular biology at the European Molecular Biology Laboratory (EMBL, Heidelberg, Germany, 1990-1995), spent a year at the European Bioinformatics Institute (EBI, Hinxton, Cambridgshire, England, 1995), returned to the EMBL (1996-1998), joined the company LION Biosciences for a brief interim (1998), became faculty in the Medical School of Columbia University in 1998, and joined the TUM Munich to become an Alexander von Humboldt professor in 2009.
    [Show full text]