Avancesin Systemsand Synthetic Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Reference
Article Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines BABIC, Zeljana, et al. Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines. Reference BABIC, Zeljana, et al. Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines. eLife, 2019, vol. 8, p. e41676 DOI : 10.7554/eLife.41676 PMID : 30693867 Available at: http://archive-ouverte.unige.ch/unige:119832 Disclaimer: layout of this document may differ from the published version. 1 / 1 FEATURE ARTICLE META-RESEARCH Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. -
General Assembly and Consortium Meeting 2020
EJP RD GA and Consortium meeting Final program EJP RD General Assembly and Consortium meeting 2020 Online September 14th – 18th Page 1 of 46 EJP RD GA and Consortium meeting Final program Program at a glance: Page 2 of 46 EJP RD GA and Consortium meeting Final program Table of contents Program per day ....................................................................................................................... 4 Plenary GA Session .................................................................................................................. 8 Parallel Session Pillar 1 .......................................................................................................... 10 Parallel Session Pillar 2 .......................................................................................................... 11 Parallel Session Pillar 3 .......................................................................................................... 14 Parallel Session Pillar 4 .......................................................................................................... 16 Experimental data resources available in the EJP RD ............................................................. 18 Introduction to translational research for clinical or pre-clinical researchers .......................... 21 Funding opportunities in EJP RD & How to build a successful proposal ............................... 22 RD-Connect Genome-Phenome Analysis Platform ................................................................. 26 Improvement -
2003 Mulder Nucl Acids Res {22
The InterPro Database, 2003 brings increased coverage and new features Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, Alex Bateman, David Binns, Margaret Biswas, Paul Bradley, Peer Bork, et al. To cite this version: Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, et al.. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, Oxford University Press, 2003, 31 (1), pp.315-318. 10.1093/nar/gkg046. hal-01214149 HAL Id: hal-01214149 https://hal.archives-ouvertes.fr/hal-01214149 Submitted on 9 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. # 2003 Oxford University Press Nucleic Acids Research, 2003, Vol. 31, No. 1 315–318 DOI: 10.1093/nar/gkg046 The InterPro Database, 2003 brings increased coverage and new features Nicola J. Mulder1,*, Rolf Apweiler1, Teresa K. Attwood3, Amos Bairoch4, Daniel Barrell1, Alex Bateman2, David Binns1, Margaret Biswas5, Paul Bradley1,3, Peer Bork6, Phillip Bucher7, Richard R. Copley8, Emmanuel Courcelle9, Ujjwal Das1, Richard Durbin2, Laurent Falquet7, Wolfgang Fleischmann1, Sam Griffiths-Jones2, Downloaded from Daniel Haft10, Nicola Harte1, Nicolas Hulo4, Daniel Kahn9, Alexander Kanapin1, Maria Krestyaninova1, Rodrigo Lopez1, Ivica Letunic6, David Lonsdale1, Ville Silventoinen1, Sandra E. -
Biolayout Paper Fig3 V3
Edinburgh Research Explorer Construction, visualisation, and clustering of transcription networks from Microarray expression data Citation for published version: Freeman, TC, Goldovsky, L, Brosch, M, Van Dongen, S, Maziere, P, Grocock, RJ, Freilich, S, Thornton, J & Enright, AJ 2007, 'Construction, visualisation, and clustering of transcription networks from Microarray expression data', PLoS Computational Biology, vol. 3, no. 10, e206, pp. 2032-2042. https://doi.org/10.1371/journal.pcbi.0030206 Digital Object Identifier (DOI): 10.1371/journal.pcbi.0030206 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS Computational Biology Publisher Rights Statement: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data Tom C. Freeman1,2*, Leon Goldovsky3¤, Markus Brosch2, Stijn van Dongen2, Pierre Mazie`re2, Russell J. -
MPGM: Scalable and Accurate Multiple Network Alignment
MPGM: Scalable and Accurate Multiple Network Alignment Ehsan Kazemi1 and Matthias Grossglauser2 1Yale Institute for Network Science, Yale University 2School of Computer and Communication Sciences, EPFL Abstract Protein-protein interaction (PPI) network alignment is a canonical operation to transfer biological knowledge among species. The alignment of PPI-networks has many applica- tions, such as the prediction of protein function, detection of conserved network motifs, and the reconstruction of species’ phylogenetic relationships. A good multiple-network align- ment (MNA), by considering the data related to several species, provides a deep understand- ing of biological networks and system-level cellular processes. With the massive amounts of available PPI data and the increasing number of known PPI networks, the problem of MNA is gaining more attention in the systems-biology studies. In this paper, we introduce a new scalable and accurate algorithm, called MPGM, for aligning multiple networks. The MPGM algorithm has two main steps: (i) SEEDGENERA- TION and (ii) MULTIPLEPERCOLATION. In the first step, to generate an initial set of seed tuples, the SEEDGENERATION algorithm uses only protein sequence similarities. In the second step, to align remaining unmatched nodes, the MULTIPLEPERCOLATION algorithm uses network structures and the seed tuples generated from the first step. We show that, with respect to different evaluation criteria, MPGM outperforms the other state-of-the-art algo- rithms. In addition, we guarantee the performance of MPGM under certain classes of net- work models. We introduce a sampling-based stochastic model for generating k correlated networks. We prove that for this model if a sufficient number of seed tuples are available, the MULTIPLEPERCOLATION algorithm correctly aligns almost all the nodes. -
Presentation Sams Patrick Ruch
Genealogy… How can I relevantly answer the invitation from the SAMS’ medical librarians ? Special greetings to Tamara Morcillo and Isabelle de Kaenel ! 2 Today’s agenda 3 Count of bi-gram and tri-grams 4 … to support my presentation ! 5 Objective of text and data mining To support you like TDM helped me today ! 6 How text & data mining can support… ● … medical librarians ? ● … research data and open science ? [well covered by other speakers] ● … clinical knowledge ? 7 History ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics 8 Blind spot ● Empirical medicine Observation & Cooking [Mountains are made of stones] ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) • Overcome publication paywalls • Fight silos [researchers, clinicians, institutions…] • Empower patients • Establish circle of trust and clarify legal basis 9 Basis of clinical practice… ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) ! Evidence-based “holistic” (including phenotypes) personalized health ! 10 Basis of clinical practice… ● Empirical medicine Observation & Cooking ● Evidence-based medicine Statistical power Open Access, Open Science required ! ● Personalized health Deciphering omics ● Access to EHR evidences (80% narratives) ! 11 How text & data mining can support… ● … medical librarians -
Biological Databases an Introduction
Biological databases an introduction By Dr. Erik Bongcam-Rudloff SLU 2017 Biological Databases ▪ Sequence Databases ▪ Genome Databases ▪ Structure Databases Sequence Databases ▪ The sequence databases are the oldest type of biological databases, and also the most widely used Sequence Databases ▪ Nucleotide: ATGC ▪ Protein: MERITSAPLG The nucleotide sequence repositories ▪ There are three main repositories for nucleotide sequences: EMBL, GenBank, and DDBJ. ▪ All of these should in theory contain "all" known public DNA or RNA sequences ▪ These repositories have a collaboration so that any data submitted to one of databases will be redistributed to the others. ▪ The three databases are the only databases that can issue sequence accession numbers. ▪ Accession numbers are unique identifiers which permanently identify sequences in the databases. ▪ These accession numbers are required by many biological journals before manuscripts are accepted. ▪ It should be noted that during the last decade several commercial companies have engaged in sequencing ESTs and genomes that they have not made public. Ideal minimal content of a « sequence » db Sequences !! Accession number (AC) References Taxonomic data ANNOTATION/CURATION Keywords Cross-references Documentation Example: Swiss-Prot entry Entry name Accession number sequence Protein name Gene name Taxonomy References Comments Cross-references Keywords Feature table (sequence description) Sequence database: example …a SWISS-PROT entry, in fasta format: >sp|P01588|EPO_HUMAN ERYTHROPOIETIN PRECURSOR - -
Glycoprotein Hormone Receptors in Sea Lamprey
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2007 Glycoprotein hormone receptors in sea lamprey (Petromyzon marinus): Identification, characterization and implications for the evolution of the vertebrate hypothalamic-pituitary-gonadal/thyroid axes Mihael Freamat University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Freamat, Mihael, "Glycoprotein hormone receptors in sea lamprey (Petromyzon marinus): Identification, characterization and implications for the evolution of the vertebrate hypothalamic-pituitary-gonadal/ thyroid axes" (2007). Doctoral Dissertations. 395. https://scholars.unh.edu/dissertation/395 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. GLYCOPROTEIN HORMONE RECEPTORS IN SEA LAMPREY (PETROMYZON MARI Nil S): IDENTIFICATION, CHARACTERIZATION AND IMPLICATIONS FOR THE EVOLUTION OF THE VERTEBRATE HYPOTHALAMIC-PITUITARY-GONADAL/THYROID AXES BY MIHAEL FREAMAT B.S. University of Bucharest, 1995 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Biochemistry September, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3277139 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
CV: Amos Bairoch
JST-ETHZ JointWS 2009 CV of Presenter Name (Underline Prof. Amos Bairoch the Family Name): Job Title: Group Leader Organization: Swiss Institute of Bioinformatics Major Field: Bioinformatics, Databases, Sequence Analysis Education: 1990: Ph.D. thesis, University of Geneva, Switzerland. Title: "PC/Gene: a protein and nucleic acid sequence analysis microcomputer package, PROSITE: a dictionary of sites and patterns in proteins, and SWISS-PROT: a protein sequence data bank"; 1983: Diploma (M. Sc.) in Biochemistry, University of Geneva, Switzerland; 1981: Licence (B. Sc.) in Chemistry, University of Geneva, Switzerland; 1981: Licence (B. Sc.) in Biochemistry, University of Geneva, Switzerland; 1977: Maturité scientifique, ‘college de Genève’. Job history: Professor of Bioinformatics and Director of the Department of Structural Biology and Bioinformatics at the University of Geneva, Amos Bairoch is head of the CALIPHO group of the Swiss Institute of Bioinformatics. Until June 2009, Amos was head of the Swiss-Prot group which develops the Swiss-Prot knowledgebase as well as PROSITE, a database of protein families and domains and ENZYME, a database of information on the nomenclature of enzymes. He is also co-responsible for the development of ExPASy, the world’s first web site dedicated to protein molecular biology. Amos Bairoch’s main work lies in the field of protein sequence analysis and the development of databases and software tools for this purpose. His first project, as a Ph.D student, was the development of PC/Gene, an MS-DOS based software package for the analysis of protein and nucleotide sequences. While working on PC/Gene he started to develop an annotated protein sequence database, which became Swiss-Prot, first released in July 1986. -
UC Riverside UC Riverside Previously Published Works
UC Riverside UC Riverside Previously Published Works Title Structural genomics is the largest contributor of novel structural leverage. Permalink https://escholarship.org/uc/item/82z2z1fg Journal Journal of structural and functional genomics, 10(2) ISSN 1345-711X Authors Nair, Rajesh Liu, Jinfeng Soong, Ta-Tsen et al. Publication Date 2009-04-01 DOI 10.1007/s10969-008-9055-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Struct Funct Genomics (2009) 10:181–191 DOI 10.1007/s10969-008-9055-6 Structural genomics is the largest contributor of novel structural leverage Rajesh Nair Æ Jinfeng Liu Æ Ta-Tsen Soong Æ Thomas B. Acton Æ John K. Everett Æ Andrei Kouranov Æ Andras Fiser Æ Adam Godzik Æ Lukasz Jaroszewski Æ Christine Orengo Æ Gaetano T. Montelione Æ Burkhard Rost Received: 15 November 2008 / Accepted: 8 December 2008 / Published online: 5 February 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract The Protein Structural Initiative (PSI) at the US structures for protein sequences with no structural repre- National Institutes of Health (NIH) is funding four large- sentative in the PDB on the date of deposition). The scale centers for structural genomics (SG). These centers structural coverage of the protein universe represented by systematically target many large families without structural today’s UniProt (v12.8) has increased linearly from 1992 to coverage, as well as very large families with inadequate 2008; structural genomics has contributed significantly to structural coverage. Here, we report a few simple metrics the maintenance of this growth rate. -
Computational Analysis of Protein Function Within Complete Genomes
Computational Analysis of Protein Function within Complete Genomes Anton James Enright Wolfson College A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom. Email: [email protected] March 7, 2002 To My Parents and Kerstin This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This thesis does not exceed the specified length limit of 300 pages as de- fined by the Biology Degree Committee. This thesis has been typeset in 12pt font using LATEX2ε accordingtothe specifications defined by the Board of Graduate Studies and the Biology Degree Committee. ii Computational Analysis of Protein Function within Complete Genomes Summary Anton James Enright March 7, 2002 Wolfson College Since the advent of complete genome sequencing, vast amounts of nucleotide and amino acid sequence data have been produced. These data need to be effectively analysed and verified so that they may be used for biologi- cal discovery. A significant proportion of predicted protein sequences from these complete genomes have poorly characterised or unknown functional annotations. This thesis describes a number of approaches which detail the computational analysis of amino acid sequences for the prediction and analy- sis of protein function within complete genomes. The first chapter is a short introduction to computational genome analysis while the second and third chapters describe how groups of related protein sequences (termed protein families) may be characterised using sequence clustering algorithms. -
EMBL-EBI Press Release European Molecular Biology Laboratory European Bioinformatics Institute for Immediate Release
EMBL-EBI Press Release European Molecular Biology Laboratory European Bioinformatics Institute For immediate release Trees, vines and nets – microbial evolution changes its face methods and different research groups are remarkably consistent with each other, projecting the same story. We used these trees as the scaffold of the net, on which we looked for the evidence of horizontally transferred genes,” explains Victor. To get a grip on horizontal gene transfer, they used a method called GeneTrace, previously developed by Victor and Christos. GeneTrace infers horizontal transfer from the patchy presence of a gene family in distantly related organisms. The data generated by GeneTrace allowed them to draw ‘vines’, representing horizontal-gene- transfer events, connecting branches on the evolutionary tree. In all, more than 600,000 vertical transfers are observed, coupled with 90,000 gene loss events and A bird's-eye view of the tree of life, showing the vines in red and the tree's branches in grey (Bacteria) and green (Archaea). The last universal approximately 40,000 horizontal gene transfers. Thus, common ancestor is shown as a yellow sphere. although the distribution of most of the gene families present today can be explained by the classical theory of Hinxton, July 1, 2005 – EBI researchers have changed evolution by descent, anomalies of these patterns are our view of 4 billion years of microbial evolution. Christos revealed by the ‘minority report’ of horizontal exchange. Ouzounis and colleagues have gained intriguing To understand the influence of horizontal gene transfer on quantitative insights into how gene families are the microbial tree of life, they focused on the network of transferred, not only ‘vertically’ through passage from one vines coursing through the tree’s branches.