A new age model for the Pliocene of the Southern North Sea Basin: a multi proxy climate reconstruction Emily Dearing Crampton-Flood1*, Lars J. Noorbergen2, Damian Smits1, R. Christine Boschman1, Timme H. Donders4, Dirk K. Munsterman5, Johan ten Veen5, Francien Peterse1, 5 Lucas Lourens1, Jaap S. Sinninghe Damsté1,3 1Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands 2Department of Earth Sciences, VU University Amsterdam, Amsterdam, The Netherlands 3Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, The Netherlands 10 4Department of Physical Geography, Utrecht University, Utrecht, The Netherlands 5TNO-Geological Survey of the Netherlands, Utrecht, The Netherlands Correspondence to: Emily Dearing Crampton-Flood (
[email protected]) *Present address: School of Earth and Environmental Sciences, The University of Manchester, Manchester, The United Kingdom 15 Abstract The mid-Piacenzian Warm Period (mPWP, 3264–3025 ka) represents the most recent interval in Earth’s history where atmospheric CO2 levels were similar to today. The reconstruction of sea surface temperatures (SSTs) and climate modelling studies have shown that global 20 temperatures were 2–4 °C warmer than present. However, detailed reconstructions of marginal seas and/or coastal zones, linking the coastal and continental climate evolution, are lacking. This is in part due to the absence of precise age models for coastal sedimentary successions, as they are generally formed by dynamic depositional systems with varying sediment and freshwater inputs. Here, we present a multi-proxy record of Pliocene climate change in the 25 coastal Southern North Sea Basin (SNSB) based on the sedimentary record from borehole Hank, the Netherlands.