Structure-Function Relation of the Developing Calyx of Held Synapse in Vivo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamic Development of the Calyx of Held Synapse
Dynamic development of the calyx of Held synapse Adria´ n Rodríguez-Contreras*, John Silvio Soria van Hoeve, Ron L. P. Habets†, Heiko Locher, and J. Gerard G. Borst Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands Communicated by Erwin Neher, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, February 12, 2008 (received for review January 11, 2008) The calyx of Held is probably the largest synaptic terminal in the Results brain, forming a unique one-to-one connection in the auditory Relation Between Large Axosomatic Contacts and Synaptic Clusters. ventral brainstem. During early development, calyces have many Brainstem sections containing the MNTB at different postnatal collaterals, whose function is unknown. Using electrophysiological ages were stained immunohistochemically for VGLUT, a pre- recordings and fast-calcium imaging in brain slices, we demon- synaptic marker of excitatory synapses, and analyzed by using strate that these collaterals are involved in synaptic transmission. fluorescence microscopy (Fig. 1). At postnatal day 2 (P2) and We show evidence that the collaterals are pruned and that the younger ages, punctate labeling was observed both in the neu- pruning already begins 1 week before the onset of hearing. Using ropil and around cell bodies in the MNTB. At P3 and beyond, two-photon microscopy to image the calyx of Held in neonate rats, large perisomatic presynaptic clusters (LPCs) of VGLUT stain- we report evidence that both axons and nascent calyces are ing were present (Fig. 1 A and B). The fraction of cells structurally dynamic, showing the formation, elimination, exten- surrounded by LPCs increased with age. -
Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System
International Journal of Molecular Sciences Review Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System Shenglong Zou and Ujendra Kumar * Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-3660; Fax: +1-604-822-3035 Received: 9 February 2018; Accepted: 11 March 2018; Published: 13 March 2018 Abstract: The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids. Keywords: cannabinoid; endocannabinoid; receptor; signaling; central nervous system 1. Introduction The plant Cannabis sativa, better known as marijuana, has long been used for medical purpose throughout human history. -
Deactivation Kinetics of Acid-Sensing Ion Channel 1A Are Strongly Ph
Deactivation kinetics of acid-sensing ion channel 1a PNAS PLUS are strongly pH-sensitive David M. MacLeana,1 and Vasanthi Jayaramana aCenter for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030 Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved February 13, 2017 (received for review December 14, 2016) Acid-sensing ion channels (ASICs) are trimeric cation-selective ion (20). The rapid deactivation combined with ASICs’ slow de- channels activated by protons in the physiological range. Recent sensitization enables these channels to operate at high stimulus reports have revealed that postsynaptically localized ASICs contribute frequencies that desensitize most other NGICs (20). However, to the excitatory postsynaptic current by responding to the transient the synaptic cleft pH waveform is more complicated than the acidification of the synaptic cleft that accompanies neurotransmis- binary alkaline or acidic stimulation previously used. A pH drop sion. In response to such brief acidic transients, both recombinant and of 0.2–0.6 pH units or greater can accompany single-release native ASICs show extremely rapiddeactivationinoutside-out events, but the synaptic cleft pH may not return directly back to patches when jumping from a pH 5 stimulus to a single resting pH physiological pH (21–25). Rather, following brief stimulations, of 8. Given that the resting pH of the synaptic cleft is highly dynamic “ ” and depends on recent synaptic activity, we explored the kinetics of synaptic cleft pH overshoots the physiological range by 0.2 pH ASIC1a and 1a/2a heteromers to such brief pH transients over a wider units or more and remains alkaline for several tens or hundreds of + – [H ] range to approximate neuronal conditions better. -
NGF-Dependent Retrograde Signaling: Survival Versus Death
Cell Research (2009) 19:525-526. npg © 2009 IBCB, SIBS, CAS All rights reserved 1001-0602/09 $ 30.00 RESEARCH HIGHLIGHT www.nature.com/cr NGF-dependent retrograde signaling: survival versus death Yang Zhou1, Ting-Jia Lu1, Zhi-Qi Xiong1 1Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road Shanghai 200031, China Cell Research (2009) 19:525-526. doi: 10.1038/cr.2009.47; published online 4 May 2009 Nerve growth factor (NGF) was which could also provide as the ret- nisms underlying NGF-dependent first discovered more than 5 decades rograde signals [7]. These hypotheses retrograde signaling. Previous studies ago as a molecule that promotes the are not mutually exclusive, and mul- from Campenot’s laboratory demon- survival and maturation of develop- tiple retrograde signals may exist. strated that NGF applied to distal ax- ing neurons in the peripheral nervous In this issue, Mok and colleagues ons of sympathetic neurons supports system [1]. NGF released from target describe a fundamentally different neuronal survival without transport of cells activates tropomyosin-related retrograde mechanism in which NGF NGF towards the cell bodies or TrkA kinase A (TrkA) on axon terminals and suppresses an apoptotic signal in distal phosphorylation in the cell bodies, triggers activation of PI3K/Akt, MEK/ axons [8]. Campenot’s group devel- suggesting that NGF binding to TrkA ERK, and PLCg signaling pathways. oped compartmentalized cultures of in distal axons triggers its downstream The signal then travels retrogradely sympathetic neurons which could seg- signaling cascades locally; afterwards along axon to cell body to promote regate the distal axons from cell bod- the signals travel retrogradely to the neuronal survival [2]. -
Endocannabinoid Biosynthesis and Inactivation, from Simple to Complex
REVIEWS Drug Discovery Today Volume 15, Numbers 11/12 June 2010 Reviews POST SCREEN Endocannabinoid biosynthesis and inactivation, from simple to complex Giulio G. Muccioli Bioanalysis and Pharmacology of Bioactive Lipids Laboratory, CHAM7230, Louvain Drug Research Institute, Universite´ catholique de Louvain, Av. E. Mounier 72, B- 1200 Bruxelles, Belgium Cannabinoid receptors, the primary molecular targets of the endocannabinoid system, are activated by specific bioactive lipids termed ‘endocannabinoids’. These lipid transmitters are synthesized from cell membrane phospholipids through multiple pathways and are inactivated by enzymatic hydrolysis, and their levels are the major parameter driving the endocannabinoid system activity. An in-depth understanding of their metabolic pathways is essential to unravel the endocannabinoid system’s role in physiological and pathological situations and to devise new therapeutic strategies based on the endocannabinoid system. Major advances both in the characterization of anandamide’s and 2- arachidonoylglycerol’s biosynthesis and inactivation pathways and in the discovery of pharmacological tools used to interfere with their metabolism have been made and are discussed in this review. Endocannabinoids are endogenous lipid transmitters that act by persistent activation or blockade and by the lack of tissue speci- binding and activating specific G-protein-coupled-receptors ficity of the ligands developed so far. A novel, more subtle, termed ‘CB1 and CB2 cannabinoid receptors’. To date, N-arachi- approach is the use of allosteric modulators, thus potentially donoylethanolamine (anandamide) and 2-arachidonoylglycerol avoiding some of the aforementioned drawbacks. However, the are the most thoroughly studied endocannabinoids. Anandamide most promising alternative strategy, now supported by a growing is a member of the N-acylethanolamine (NAE) family, a large group number of studies, is to modulate endogenous ligand levels. -
Structure-Function Relation of the Developing Calyx of Held Synapse in Vivo
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.893685; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Structure-function relation of the developing calyx of Held synapse in vivo 2 3 Abbreviated title: Strength-size relation of the calyx of Held 4 Martijn C. Sierksma1,3, Johan A. Slotman2, Adriaan B. Houtsmuller2 and J. Gerard G. Borst1 5 1Department of Neuroscience or 2Department of Pathology – Optical Imaging Centre, Erasmus MC, 6 University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands. 7 3Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 Rue Moreau, F-75012 Paris, France. 8 Correspondence to [email protected] 9 10 11 12 13 14 15 16 17 18 19 Conflict of interest: The authors declare no competing financial interests. 20 Contributions 21 JGGB and MCS designed experiments. MCS performed in vivo electrophysiology and imaging 22 experiments, analyzed the electrophysiology and the images. JAS performed imaging experiments 23 and imaging analysis. JAS and ABH designed imaging analysis. MCS drafted the manuscript. JAS, ABH 24 and JGGB commented on manuscript. 25 Acknowledgements 26 This work was financially supported by the Earth and Life Sciences-Netherlands Organisation of 27 Scientific Research (NWO, #823.02.006, ‘Development of a Giant Synapse’). We are very grateful for 28 the help of Elize Haasdijk and Celina Glimmerveen, who performed the immunolabeling. We thank 29 Marcel van der Heijden, Peter Bremen and Aaron Wong for advice on the analyses. -
Metabotropic Glutamate Receptors: Intracellular Signaling Pathways Urs Gerber1, Christine E Gee1,2 and Pascal Benquet3
Metabotropic glutamate receptors: intracellular signaling pathways Urs Gerber1, Christine E Gee1,2 and Pascal Benquet3 Metabotropic glutamate receptors are classified into three mGluRs, will not be discussed explicitly here as this groups, primarily on the basis of sequence similarity and topic is the subject of several comprehensive recent whether they positively couple to the phospholipase C cascade reviews (e.g. see [5]). or negatively couple to adenylyl cyclases. The past decade of research, drawing on sophisticated molecular approaches, has Transduction within the mGluR revealed a multitude of additional intracellular components that Upon binding of glutamate, a conformational change in assemble as protein scaffolds around neuronal metabotropic homodimeric mGluRs promotes the coupling of G pro- glutamate receptors, establishing functional links to teins to specific intracellular domains. Structural studies, postsynaptic density structures, to membrane-bound enzymes beginning with the crystallization and characterization of and ion channels, and to the nucleus. Characterization of these the agonist-bound and ‘unliganded’ forms of the gluta- novel transduction mechanisms is providing new insights into mate binding site of mGluR1, provided initial insights the roles of metabotropic glutamate receptors in the regulation into the underlying process [6]. Agonist binding stabilizes and modulation of diverse functions in the nervous system. the closed conformation of the extracellular domain and Addresses results in G protein activation that is dependent upon a 1 Brain Research Institute, University of Zurich, CH-8057 Zurich, disulfide bridge between conserved cysteine residues in Switzerland the extracellular agonist binding loop and the third trans- 2 Novartis Institutes for Biomedical Research, Novartis Pharma AG, membrane domain [6,7]. -
Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body
The Journal of Neuroscience, August 23, 2017 • 37(34):8239–8255 • 8239 Systems/Circuits Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body James L. Sinclair, Matthew J. Fischl, Olga Alexandrova, Martin He, Benedikt Grothe, XChristian Leibold, and Conny Kopp-Scheinpflug Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d ofage.Earplugswereusedtoinduceϳ50dBelevationinauditorythresholds.Ifintroducedathearingonset,trapezoidbodyfibersdeveloped thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment. Key words: ABR; auditory brainstem; axonal conduction speed; calyx of Held; MNTB; myelination Significance Statement The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiolog- ical limit of action potential generation, precision, and speed. -
Neurotransmission: Emerging Roles of Endocannabinoids
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R549 and Keller, L. (2005). Clonal reproduction (2001). Genetic variation in a host- sexes reveals ontogenetic conflict in by males and females in the little fire ant. parasite association: potential for Drosophila. Evolution Int. J. Org. Nature 435, 1230-1234. coevolution and frequency-dependent Evolution 98, 1671–1675. 5. Hamilton, W.D., Axelrod, R., and Tanese, selection. Evolution Int. J. Org. Evolution R. (1990). Sexual reproduction as an 55, 1136–1145. adaptation to resist parasites (A Review). 8. Liersch, S., and Schmid-Hempel, P. Institute of Evolutionary Biology, Proc. Natl. Acad. Sci. USA 87, (1998). Genetic variation within social University of Edinburgh, West Mains 3566–3573. insect colonies reduces parasite load. Road, Edinburgh EH9 3JT, UK. 6. Kondrashov, A.S. (1982). Selection Proc. R. Soc. Lond. B. Biol. Sci. 265, against harmful mutations in large sexual 221–225. E-mail: [email protected] and asexual populations. Genet. Res. 40, 9. Chippendale, A.K., Gibson, J.R., and 325–332. Rice, W.R. (2001). Negative genetic 7. Carius, H.J., Little, T.J., and Ebert, D. correlation for adult fitness between DOI: 10.1016/j.cub.2005.07.001 Neurotransmission: Emerging requires a sustained (5–10 minute) activation of presynaptic CB1 Roles of Endocannabinoids receptors [12,13]. Modulation of synaptic transmission by endocannabinoids Postsynaptic release of endocannabinoids can inhibit presynaptic was initially studied using non- neurotransmitter release on short and long timescales. This retrograde physiological methods, such as inhibition occurs at both excitatory and inhibitory synapses and may seconds-long depolarization or provide a mechanism for synaptic gain control, short-term associative application of high-affinity plasticity, reduction of synaptic crosstalk, and metaplasticity. -
The Calyx of Held
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Cell Tissue Res (2006) 326:311–337 DOI 10.1007/s00441-006-0272-7 REVIEW The calyx of Held Ralf Schneggenburger & Ian D. Forsythe Received: 6 April 2006 /Accepted: 7 June 2006 / Published online: 8 August 2006 # Springer-Verlag 2006 Abstract The calyx of Held is a large glutamatergic A short history of the calyx of Held synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can The size of a synapse is a significant technical constraint for be made from the nerve terminal and its postsynaptic target electrophysiological recording. The large dimensions of (principal neurons of the medial nucleus of the trapezoid some invertebrate synapses have been exploited to provide body). Over the last decade, this preparation has been considerable insight into presynaptic function (Llinas et al. increasingly employed to investigate basic presynaptic 1972; Augustine et al. 1985; Young and Keynes 2005). mechanisms of transmission in the central nervous system. However, the progress of similar studies in vertebrates was We review here the background to this preparation and long hampered by the technical difficulty of presynaptic summarise key findings concerning voltage-gated ion recording from small nerve terminals. Over the last 50 years, channels of the nerve terminal and the ionic mechanisms a range of preparations have contributed to our understand- involved in exocytosis and modulation of transmitter ing of presynaptic mechanisms, from the neuromuscular release. The accessibility of this giant terminal has also junction (Katz 1969) to chromaffin cells (Neher and Marty permitted Ca2+-imaging and -uncaging studies combined 1982), chick ciliary ganglion (Martin and Pilar 1963; with electrophysiological recording and capacitance mea- Stanley and Goping 1991), neurohypophysial nerve termi- surements of exocytosis. -
Depletion of Calcium in the Synaptic Cleft of a Calyx-Type Synapse in the Rat Brainstem
9501 Journal of Physiology (1999), 521.1, pp.123—133 123 Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem J. G. G. Borst and B. Sakmann Max-Planck-Institut fur medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, D_69120 Heidelberg, Germany Appendix by Eberhard von Kitzing (Received 12 April 1999; accepted after revision 23 August 1999) 1. A new form of synaptic depression of excitatory synaptic transmission was observed when making voltage-clamp recordings from large presynaptic terminals, the calyces of Held and postsynaptic cells, the principal cells of the medial nucleus of the trapezoid body (MNTB), in slices of the rat auditory brainstem. 2. A short (100 ms) depolarization of the postsynaptic cell to 0 mV reduced the amplitude of the EPSCs by 35 ± 5 % (n = 7), measured at 10 ms following the depolarization. Recovery occurred within 0·5 s. 3. The reduction of the EPSCs was most probably due to reduced presynaptic calcium influx, since postsynaptic depolarization reduced presynaptic calcium or barium currents. Conversely, presynaptic depolarization also reduced postsynaptic calcium or barium influx, under conditions where transmitter release was minimal. 4. The calcium currents and the postsynaptic depolarization-induced suppression of synaptic transmission recovered with a similar time course, suggesting that this form of synaptic depression was, most probably, due to depletion of Ca¥ in the synaptic cleft. 5. We conclude that when the Ca¥ influx into the pre- or postsynaptic cell is large, extra- cellular Ca¥ is depleted. Under these conditions, the Ca¥ concentration in the synaptic cleft is a sensitive indicator of the level of synaptic activity. -
Glial Cell Contributions to Auditory Brainstem Development
REVIEW published: 21 October 2016 doi: 10.3389/fncir.2016.00083 Glial Cell Contributions to Auditory Brainstem Development Karina S. Cramer 1* and Edwin W Rubel 2 1Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA, 2 Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may Edited by: contribute to maturation of auditory pathways. Together these studies demonstrate Joel C. Glover, the importance of non-neuronal cells in the assembly of specialized auditory brainstem University of Oslo, Norway circuits.