The Calyx of Held
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamic Development of the Calyx of Held Synapse
Dynamic development of the calyx of Held synapse Adria´ n Rodríguez-Contreras*, John Silvio Soria van Hoeve, Ron L. P. Habets†, Heiko Locher, and J. Gerard G. Borst Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands Communicated by Erwin Neher, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, February 12, 2008 (received for review January 11, 2008) The calyx of Held is probably the largest synaptic terminal in the Results brain, forming a unique one-to-one connection in the auditory Relation Between Large Axosomatic Contacts and Synaptic Clusters. ventral brainstem. During early development, calyces have many Brainstem sections containing the MNTB at different postnatal collaterals, whose function is unknown. Using electrophysiological ages were stained immunohistochemically for VGLUT, a pre- recordings and fast-calcium imaging in brain slices, we demon- synaptic marker of excitatory synapses, and analyzed by using strate that these collaterals are involved in synaptic transmission. fluorescence microscopy (Fig. 1). At postnatal day 2 (P2) and We show evidence that the collaterals are pruned and that the younger ages, punctate labeling was observed both in the neu- pruning already begins 1 week before the onset of hearing. Using ropil and around cell bodies in the MNTB. At P3 and beyond, two-photon microscopy to image the calyx of Held in neonate rats, large perisomatic presynaptic clusters (LPCs) of VGLUT stain- we report evidence that both axons and nascent calyces are ing were present (Fig. 1 A and B). The fraction of cells structurally dynamic, showing the formation, elimination, exten- surrounded by LPCs increased with age. -
Deactivation Kinetics of Acid-Sensing Ion Channel 1A Are Strongly Ph
Deactivation kinetics of acid-sensing ion channel 1a PNAS PLUS are strongly pH-sensitive David M. MacLeana,1 and Vasanthi Jayaramana aCenter for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030 Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved February 13, 2017 (received for review December 14, 2016) Acid-sensing ion channels (ASICs) are trimeric cation-selective ion (20). The rapid deactivation combined with ASICs’ slow de- channels activated by protons in the physiological range. Recent sensitization enables these channels to operate at high stimulus reports have revealed that postsynaptically localized ASICs contribute frequencies that desensitize most other NGICs (20). However, to the excitatory postsynaptic current by responding to the transient the synaptic cleft pH waveform is more complicated than the acidification of the synaptic cleft that accompanies neurotransmis- binary alkaline or acidic stimulation previously used. A pH drop sion. In response to such brief acidic transients, both recombinant and of 0.2–0.6 pH units or greater can accompany single-release native ASICs show extremely rapiddeactivationinoutside-out events, but the synaptic cleft pH may not return directly back to patches when jumping from a pH 5 stimulus to a single resting pH physiological pH (21–25). Rather, following brief stimulations, of 8. Given that the resting pH of the synaptic cleft is highly dynamic “ ” and depends on recent synaptic activity, we explored the kinetics of synaptic cleft pH overshoots the physiological range by 0.2 pH ASIC1a and 1a/2a heteromers to such brief pH transients over a wider units or more and remains alkaline for several tens or hundreds of + – [H ] range to approximate neuronal conditions better. -
Thenerveimpulse05.Pdf
The nerve impulse. INTRODUCTION Axons are responsible for the transmission of information between different points of the nervous system and their function is analogous to the wires that connect different points in an electric circuit. However, this analogy cannot be pushed very far. In an electrical circuit the wire maintains both ends at the same electrical potential when it is a perfect conductor or it allows the passage of an electron current when it has electrical resistance. As we will see in these lectures, the axon, as it is part of a cell, separates its internal medium from the external medium with the plasma membrane and the signal conducted along the axon is a transient potential difference1 that appears across this membrane. This potential difference, or membrane potential, is the result of ionic gradients due to ionic concentration differences across the membrane and it is modified by ionic flow that produces ionic currents perpendicular to the membrane. These ionic currents give rise in turn to longitudinal currents closing local ionic current circuits that allow the regeneration of the membrane potential changes in a different region of the axon. This process is a true propagation instead of the conduction phenomenon occurring in wires. To understand this propagation we will study the electrical properties of axons, which include a description of the electrical properties of the membrane and how this membrane works in the cylindrical geometry of the axon. Much of our understanding of the ionic mechanisms responsible for the initiation and propagation of the action potential (AP) comes from studies on the squid giant axon by A. -
Spatial Extent of Neurons: Dendrites and Axons
Spatial extent of neurons: dendrites and axons Morphological diversity of neurons Cortical pyramidal cell Purkinje cell Retinal ganglion cells Motoneurons Dendrites: spiny vs non-spiny Recording and simulating dendrites Axons - myelinated vs unmyelinated Axons - myelinated vs unmyelinated • Myelinated axons: – Long-range axonal projections (motoneurons, long-range cortico-cortical connections in white matter, etc) – Saltatory conduction; – Fast propagation (10s of m/s) • Unmyelinated axons: – Most local axonal projections – Continuous conduction – Slower propagation (a few m/s) Recording from axons Recording from axons Recording from axons - where is the spike generated? Modeling neuronal processes as electrical cables • Axial current flowing along a neuronal cable due to voltage gradient: V (x + ∆x; t) − V (x; t) = −Ilong(x; t)RL ∆x = −I (x; t) r long πa2 L where – RL: total resistance of a cable of length ∆x and radius a; – rL: specific intracellular resistivity • ∆x ! 0: πa2 @V Ilong(x; t) = − (x; t) rL @x The cable equation • Current balance in a cylinder of width ∆x and radius a • Axial currents leaving/flowing into the cylinder πa2 @V @V Ilong(x + ∆x; t) − Ilong(x; t) = − (x + ∆x; t) − (x; t) rL @x @x • Ionic current(s) flowing into/out of the cell 2πa∆xIion(x; t) • Capacitive current @V I (x; t) = 2πa∆xc cap M @t • Kirschoff law Ilong(x + ∆x; t) − Ilong(x; t) + 2πa∆xIion(x; t) + Icap(x; t) = 0 • In the ∆x ! 0 limit: @V a @2V cM = 2 − Iion @t 2rL @x Compartmental appoach Compartmental approach Modeling passive dendrites: Cable equation -
Structure and Function Relationship in Nerve Cells & Membrane Potential
Structure and Function Relationship in Nerve Cells & Membrane Potential Asist. Prof. Aslı AYKAÇ NEU Faculty of Medicine Biophysics Nervous System Cells • Glia – Not specialized for information transfer – Support neurons • Neurons (Nerve Cells) – Receive, process, and transmit information Neurons • Neuron Doctrine – The neuron is the functional unit of the nervous system • Specialized cell type – have very diverse in structure and function Neuron: Structure/Function • designed to receive, process, and transmit information – Dendrites: receive information from other neurons – Soma: “cell body,” contains necessary cellular machinery, signals integrated prior to axon hillock – Axon: transmits information to other cells (neurons, muscles, glands) • Information travels in one direction – Dendrite → soma → axon How do neurons work? • Function – Receive, process, and transmit information – Conduct unidirectional information transfer • Signals – Chemical – Electrical Membrane Potential Because of motion of positive and negative ions in the body, electric current generated by living tissues. What are these electrical signals? • receptor potentials • synaptic potentials • action potentials Why are these electrical signals important? These signals are all produced by temporary changes in the current flow into and out of cell that drives the electrical potential across the cell membrane away from its resting value. The resting membrane potential The electrical membrane potential across the membrane in the absence of signaling activity. Two type of ions channels in the membrane – Non gated channels: always open, important in maintaining the resting membrane potential – Gated channels: open/close (when the membrane is at rest, most gated channels are closed) Learning Objectives • How transient electrical signals are generated • Discuss how the nongated ion channels establish the resting potential. -
Structure-Function Relation of the Developing Calyx of Held Synapse in Vivo
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.893685; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Structure-function relation of the developing calyx of Held synapse in vivo 2 3 Abbreviated title: Strength-size relation of the calyx of Held 4 Martijn C. Sierksma1,3, Johan A. Slotman2, Adriaan B. Houtsmuller2 and J. Gerard G. Borst1 5 1Department of Neuroscience or 2Department of Pathology – Optical Imaging Centre, Erasmus MC, 6 University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands. 7 3Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 Rue Moreau, F-75012 Paris, France. 8 Correspondence to [email protected] 9 10 11 12 13 14 15 16 17 18 19 Conflict of interest: The authors declare no competing financial interests. 20 Contributions 21 JGGB and MCS designed experiments. MCS performed in vivo electrophysiology and imaging 22 experiments, analyzed the electrophysiology and the images. JAS performed imaging experiments 23 and imaging analysis. JAS and ABH designed imaging analysis. MCS drafted the manuscript. JAS, ABH 24 and JGGB commented on manuscript. 25 Acknowledgements 26 This work was financially supported by the Earth and Life Sciences-Netherlands Organisation of 27 Scientific Research (NWO, #823.02.006, ‘Development of a Giant Synapse’). We are very grateful for 28 the help of Elize Haasdijk and Celina Glimmerveen, who performed the immunolabeling. We thank 29 Marcel van der Heijden, Peter Bremen and Aaron Wong for advice on the analyses. -
The Myelin-Forming Cells of the Nervous System (Oligodendrocytes and Schwann Cells)
The Myelin-Forming Cells of the Nervous System (oligodendrocytes and Schwann cells) Oligodendrocyte Schwann Cell Oligodendrocyte function Saltatory (jumping) nerve conduction Oligodendroglia PMD PMD Saltatory (jumping) nerve conduction Investigating the Myelinogenic Potential of Individual Oligodendrocytes In Vivo Sparse Labeling of Oligodendrocytes CNPase-GFP Variegated expression under the MBP-enhancer Cerebral Cortex Corpus Callosum Cerebral Cortex Corpus Callosum Cerebral Cortex Caudate Putamen Corpus Callosum Cerebral Cortex Caudate Putamen Corpus Callosum Corpus Callosum Cerebral Cortex Caudate Putamen Corpus Callosum Ant Commissure Corpus Callosum Cerebral Cortex Caudate Putamen Piriform Cortex Corpus Callosum Ant Commissure Characterization of Oligodendrocyte Morphology Cerebral Cortex Corpus Callosum Caudate Putamen Cerebellum Brain Stem Spinal Cord Oligodendrocytes in disease: Cerebral Palsy ! CP major cause of chronic neurological morbidity and mortality in children ! CP incidence now about 3/1000 live births compared to 1/1000 in 1980 when we started intervening for ELBW ! Of all ELBW {gestation 6 mo, Wt. 0.5kg} , 10-15% develop CP ! Prematurely born children prone to white matter injury {WMI}, principle reason for the increase in incidence of CP ! ! 12 Cerebral Palsy Spectrum of white matter injury ! ! Macro Cystic Micro Cystic Gliotic Khwaja and Volpe 2009 13 Rationale for Repair/Remyelination in Multiple Sclerosis Oligodendrocyte specification oligodendrocytes specified from the pMN after MNs - a ventral source of oligodendrocytes -
Gathering at the Nodes
RESEARCH HIGHLIGHTS GLIA Gathering at the nodes Saltatory conduction — the process by which that are found at the nodes of Ranvier, where action potentials propagate along myelinated they interact with Na+ channels. When the nerves — depends on the fact that voltage- authors either disrupted the localization of gated Na+ channels form clusters at the nodes gliomedin by using a soluble fusion protein of Ranvier, between sections of the myelin that contained the extracellular domain of sheath. New findings from Eshed et al. show neurofascin, or used RNA interference to that Schwann cells produce a protein called suppress the expression of gliomedin, the gliomedin, and that this is responsible for characteristic clustering of Na+ channels at the clustering of these channels. the nodes of Ranvier did not occur. The formation of the nodes of Ranvier is Aggregation of the domain of gliomedin specified by the myelinating cells, not the that binds neurofascin and NrCAM on the axons, and an important component of this surface of purified neurons also caused process in the peripheral nervous system the clustering of neurofascin, Na+ channels is the extension of microvilli by Schwann and other nodal proteins. These findings cells. These microvilli contact the axons at support a model in which gliomedin on the nodes, and it is here that the Schwann References and links Schwann cell microvilli binds to neurofascin ORIGINAL RESEARCH PAPER Eshed, Y. et al. Gliomedin cells express the newly discovered protein and NrCAM on axons, causing them to mediates Schwann cell–axon interaction and the molecular gliomedin. cluster at the nodes of Ranvier, and leading assembly of the nodes of Ranvier. -
Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body
The Journal of Neuroscience, August 23, 2017 • 37(34):8239–8255 • 8239 Systems/Circuits Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body James L. Sinclair, Matthew J. Fischl, Olga Alexandrova, Martin He, Benedikt Grothe, XChristian Leibold, and Conny Kopp-Scheinpflug Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d ofage.Earplugswereusedtoinduceϳ50dBelevationinauditorythresholds.Ifintroducedathearingonset,trapezoidbodyfibersdeveloped thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment. Key words: ABR; auditory brainstem; axonal conduction speed; calyx of Held; MNTB; myelination Significance Statement The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiolog- ical limit of action potential generation, precision, and speed. -
New Plasmon-Polariton Model of the Saltatory Conduction
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.910596; this version posted January 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Manuscript submitted to BiophysicalJournal Article New plasmon-polariton model of the saltatory conduction W. A. Jacak1,* ABSTRACT We propose a new model of the saltatory conduction in myelinated axons. This conduction of the action potential in myelinated axons does not agree with the conventional cable theory, though the latter has satisfactorily explained the electro- signaling in dendrites and in unmyelinated axons. By the development of the wave-type concept of ionic plasmon-polariton kinetics in axon cytosol we have achieved an agreement of the model with observed properties of the saltatory conduction. Some resulting consequences of the different electricity model in the white and the gray matter for nervous system organization have been also outlined. SIGNIFICANCE Most of axons in peripheral nervous system and in white matter of brain and spinal cord are myelinated with the action potential kinetics speed two orders greater than in dendrites and in unmyelinated axons. A decrease of the saltatory conduction velocity by only 10% ceases body functioning. Conventional cable theory, useful for dendrites and unmyelinated axon, does not explain the saltatory conduction (discrepancy between the speed assessed and the observed one is of one order of the magnitude). We propose a new nonlocal collective mechanism of ion density oscillations synchronized in the chain of myelinated segments of plasmon-polariton type, which is consistent with observations. -
The Nervous System Action Potentials
The Nervous System Action potentials Jennifer Carbrey Ph.D. Department of Cell Biology Nervous System Cell types neurons glial cells Methods of communication in nervous system – action potentials How the nervous system is organized central vs. peripheral Voltage Gated Na+ & K+ Channels image by Rick Melges, Duke University Depolarization of the membrane is the stimulus which leads to both channels opening. To reset the Na+ channel from inactive to closed need to repolarize the membrane. Refractory period is when Na+ channels are inactivated. Action Potentials stage are rapid, “all or none” and do not decay over 1 2 3 4 5 distances top image by image by Chris73 (modified), http://commons.wikimedia.org/wiki/File:Action_potential_%28no_labels%29.svg, Creative Commons Attribution-Share Alike 3.0 Unported license bottom image by Rick Melges, Duke University Unidirectional Propagation of AP image by Rick Melges, Duke University Action potentials move one-way along the axon because of the absolute refractory period of the voltage gated Na+ channel. Integration of Signals Input: Dendrites: ligand gated ion channels, some voltage gated channels; graded potentials Cell body (Soma): ligand gated ion channels; graded potentials Output: Axon: voltage gated ion channels, action potentials Axon initial segment: highest density of voltage gated ion channels & lowest threshold for initiating an action potential, “integrative zone” Axon Initial Segment image by Rick Melges, Duke University Integration of signals at initial segment Saltatory Conduction Node of Ranvier Na+ action potential Large diameter, myelinated axons transmit action potentials very rapidly. Voltage gated channels are concentrated at the nodes. Inactivation of voltage gated Na+ channels insures uni-directional propagation along the axon. -
Neuronal Signaling Neuroscience Fundamentals > the Nerve Cell > the Nerve Cell
Neuronal Signaling Neuroscience Fundamentals > The Nerve Cell > The Nerve Cell NEURONAL SIGNALING SUMMARY ACTION POTENTIALS See: Action Potentials Key Features • All-or-nothing events • Self-propagating • Conduction speed determined by axon diameter (thicker means faster) and amount of myelination (more myelin means faster transmission). CHEMICAL SYNAPSE Steps of Chemical Synapsis 1) The action potential travels down axon of presynaptic neuron. 2) Vesicle fuses with plasma membrane and releases neurotransmitter into the synaptic cleft. 3) Neurotransmitters bind to ligand-gated ion channels, opening them. 4) Ions entering through the open channels cause a depolarization of the membrane, opening voltage-gated ion channels. 5) Ions pass through these voltage-gated ion channels, causing further depolarization of the membrane. 6) This depolarization (action potential) travels along the membrane as more voltage-gated ion channels are opened. ELECTRICAL SYNAPSE • Cytoplasms of adjacent neurons are connected, allowing ions (and action potentials) to travel directly to the next cell. NEURONAL CODING OF STIMULUS STRENGTH Action Potential Frequency • Stimulus strength is based on frequency of action potentials. Action Potential Strength • Strong stimuli can produce another action potential during the relative refractory period. 1 / 7 ABSOLUTE REFRACTORY PERIOD No further action potentials • Voltage-gated sodium channels are open or inactivated so another stimulus, no matter its strength, CANNOT elicit another action potential. RELATIVE REFRACTORY