Dates from the Molecular Clock: How Wrong Can We Be?

Total Page:16

File Type:pdf, Size:1020Kb

Dates from the Molecular Clock: How Wrong Can We Be? TREE-758; No of Pages 5 Opinion TRENDS in Ecology and Evolution Vol.xxx No.x Dates from the molecular clock: how wrong can we be? Ma´ rio J.F. Pulque´ rio and Richard A. Nichols School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK Large discrepancies have been found in dates of measures of uncertainty): is there likely to be so much evolutionary events obtained using the molecular clock. uncertainty about molecular dating that the estimates are Twofold differences have been reported between the no longer useful? We fear that, for many current studies, dates estimated from molecular data and those from the answer is yes. However, it might be possible to gain the fossil record; furthermore, different molecular meth- extra precision using recently developed methods. The ods can give dates that differ 20-fold. New software degree of improvement depends on the pattern of variation attempts to incorporate appropriate allowances for this in the rate of molecular evolution and the availability of uncertainty into the calculation of the accuracy of date calibration points. We currently do not know enough to be estimates. Here, we propose that these innovations confident in the prospects of these new methods, and some represent welcome progress towards obtaining reliable initial results are discouraging. dates from the molecular clock, but warn that they are currently unproven, given that the causes and pattern of Why might the molecular clock have a relatively the discrepancies are the subject of ongoing research. constant rate? This research implies that many previous studies, even During the 1960s, Zuckerkandl and Pauling [1] observed some of those using recently developed methods, might that the number of amino acid differences between the have placed too much confidence in their date estimates, haemoglobin of different species had an approximately and their conclusions might need to be revised. linear relationship with the time since their common ances- tor, as estimated from the fossil record. Kimura [2,3] Molecular clocks and substitution rates explained the unexpectedly constant and rapid rate of evo- This article was motivated by the experience of a colleague lution by assuming that most substitutions have little effect who estimated the time since the separation of two taxa on fitness, contrary to the orthodoxy of the time (Box 1). This from the number of substitutions that had accumulated ’Neutral Theory’ is not a complete explanation, however. For between their DNA sequences; in other words, he was example, it predicts a constant substitution rate per gen- using the molecular clock. On submitting the work for eration, whereas empirical evidence suggests something publication, he was startled to be advised by a referee that closer to a constant rate per year [3]. Consider, as an his estimate was wrong by a factor of ten. The argument example, two related lineages: the elephants and the ele- concerned the tick rate of the molecular clock; that is, the phant shrews, which appear to have diverged 80 million rate of accumulation of substitutions per million years. years ago (Mya) [4]. They have very different generation How could the scientific community hold two such contra- times: for elephants, it is 25 years, whereas for elephant dictory opinions simultaneously? shrews, it is approximately two orders of magnitude less. Our colleague’s original calculation was based on a rate Despite their much shorter generations, the estimated rate estimated from inter-species comparisons, whereas the of substitution per year is only 2.5 times faster in elephant referee preferred a rate obtained from a pedigree study. shrews compared with that in elephants [4]. Later, we address why such discrepancies exist between In fact, Ohta [5] found that generation-time effects are estimates of substitution rates. The central lesson for more apparent in DNA-sequence data than in comparisons this article, however, is the realization that reasonable of amino-acid sequence. She explained this pattern with scientists working with the molecular clock can be using her Nearly-Neutral extension of Kimura’s theory (Box 1), estimates that are so different. If neither the fast estimate which argues that substitution rates can be elevated in nor the slow estimate were self-evidently wrong, it sug- small populations by the fixation of mildly deleterious gests that it is difficult to validate them using our knowl- mutations, and that this effect, among others [6–8], can edge of biogeography and the fossil record. Methods are compensate for longer generation times. Mutations are currently being devised that deal with uncertainty about more likely to be deleterious if they are amino-acid chan- the variation in the rate and about the timing of the ging (i.e. non-synonymous), hence the compensation calibration points. Here, we consider the prospects of between population size and generation time might be obtaining date estimates that take account of these issues more effective for amino-acid sequences than for DNA. when constructing their standard errors (or analogous The fundamental principles associated with the Nearly Neutral Theory mean that the rate of the molecular clock Corresponding author: Pulque´rio, M.J.F. ([email protected]). is known to vary between evolutionary lineages, and that Available online xxxxxx. it does so in a way that is not precisely predictable, www.sciencedirect.com 0169-5347/$ – see front matter ß 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tree.2006.11.013 Please cite this article in press as: Pulque´rio, M.J.F. and Nichols, R.A., Dates from the molecular clock: how wrong can we be?, Trends Ecol. Evol. (2006), doi:10.1016/j.tree.2006.11.013 TREE-758; No of Pages 5 2 Opinion TRENDS in Ecology and Evolution Vol.xxx No.x How bad is the problem? Box 1. The neutral and nearly neutral rate Any assessment of the errors associated with molecular The apparently constant rate at which nucleotide substitutions have clock estimates must face the fundamental problem that accumulated among species was initially thought puzzling. This there is no definitive yardstick against which they can be pattern contrasts with the rate of morphological divergence between species, which differs considerably along different lineages checked: we do not know the true dates of the divergences [47], probably because of differences in the selection moulding the of species. There are three broad approaches to circumvent form and structure of the species. Kimura [3] resolved this problem this issue. by proposing that most molecular changes have negligible effects First, the variation in the substitution rate can be on fitness, and argued that advantageous mutations affecting detected without knowing any times, because we know morphology, and the phenotype in general, are rare. An important feature of his so-called ‘Neutral Theory’ is that the substitution rate logically that, for any two extant species, the time back to (mutations fixed per generation, as can be inferred by comparing their common ancestor is the same for both lineages. The sequences from different species) is equal to the mutation rate, mn problem with this type of analysis is low power [15]: (mutations per gamete per generation) and is independent of differences of fourfold can escape detection. Consequently, population size. This result can be explained by considering a convincing tests must combine information from many (diploid) population of size N that is produced by 2N gametes, each species to characterize the overall degree of rate variation, of which might contain a mutation; thus, 2Nmn new neutral mutations arrive in a population on average each generation. and our knowledge of a particular evolutionary branch is Because they are neutral, the mutations have just as much chance less precise. as any of those in the other 2N lineages of eventually becoming A second, rarely used approach is to check the inferred fixed, so the probability of fixation is 1/2N for each of 2Nmn substitution rate from phylogenetic studies against the mutations per generation, making the overall rate 1/2N Â 2Nmn = mn. When DNA sequence data became readily available, it was mutation rate observed in pedigrees, given that, according apparent that the rates of nucleotide substitution were more rapid to the Neutral Theory, mutation rate and substitution rate in the evolutionary lineages of organisms with shorter generation should be the same [3]. However, these comparisons sug- times. This trend was not so clearly discerned in the rates of gest large differences: the mutation rate estimated from substitution of amino acids. This incongruence was one of the reasons that led Ohta [48] to propose the Nearly Neutral Theory of pedigrees of humans is a hundredfold higher than the Evolution, which highlights the effect of population size on the substitution rate for the primate mitochondrial DNA con- spread of mildly deleterious mutations. Such alleles can increase in trol region [16]. One response is to avoid calibrating the frequency by chance, under the action of genetic drift, in a similar molecular clock using pedigree-based mutation rates, but manner to genuinely neutral alleles. If the selection acting against a it would be reassuring to understand why these rates differ new mutation is sufficiently mild, then the deleterious allele can spread to fixation. Genetic drift becomes sufficiently rapid relative to so much. selection if the population size is smaller than the inverse of the The third approach is to compare the clock-based dates selection coefficient [6]. There does appear to be an inverse with those obtained by other approaches, such as fossil or relationship between generation time and population size that biogeographical studies. These dates are themselves could obscure the generation time effect on substitution for amino imprecise: the geological dating has some error; more acids (which might be subject to selection), but not on synonymous mutations in the nucleotide sequence.
Recommended publications
  • Molecular Clock: Insights and Pitfalls
    Molecular clock: insights and pitfalls • An historical presentation of the molecular clock. • Birth of the molecular clock • Neutral Theory of evolution • The Nearly Neutral Theory of Evolution • The molecular clock is a « sloppy » clock. • A variable « tick rate » • Different rates for different groups • Calibrating a molecular phylogenetic tree • Dating Methods --- Introductory seminar on the use of molecular tools in natural history collections - 6-7 November 2007, RMCA --- A historical presentation of the molecular clock -1951-1955: Sanger sequenced the first protein, the insulin. Give the potential for using molecular sequences to construct phylogeny -1962: Zuckerkandl and Pauling: AA differences between the hemoglobin of different species is correlated with the time passed since they diverged. Divergence time (T) dAB / 2 A B Rate = (dAB / 2) / T C D --- Introductory seminar on the use of molecular tools in natural history collections - 6-7 November 2007, RMCA --- A historical presentation of the molecular clock Fixed or lost by chance Kimura, 1968 Eliminated by selection Fixed by selection Selection theory more in agreement with the rate of morphological evolution (Modified from Bromham and Penny, 2003) --- Introductory seminar on the use of molecular tools in natural history collections - 6-7 November 2007, RMCA --- The Neutral Theory of molecular evolution Eliminated by selection Fixed by selection Kimura, 1968 Fixed or lost by chance GENETIC DRIFT ν ν Molecular rate of evolution = Mutation rate 2N e * 1/2N e = (Modified from
    [Show full text]
  • U-Pb Geochronology and the Calibration of Metazoan Evolution: Progress and Promise
    Eleventh Annual V. M. Goldschmidt Conference (2001) 3867.pdf U-PB GEOCHRONOLOGY AND THE CALIBRATION OF METAZOAN EVOLUTION: PROGRESS AND PROMISE. S. A. Bowring, M. W. Martin, and J. P. Grotzinger. Intensive efforts by paleontologists, evolutionary and developmental biologists, and geologists are leading to a much better understanding of the first appearance and subsequent explosive diversification of animals. The recognition of thin zircon-bearing air-fall ash beds interlayered with fossil-bearing rocks has allowed the establishment of a high-precision temporal framework for animal evolution. Refined laboratory techniques permit analytical uncertainties that translate to age uncertainties of less than 1 Ma and the potential for global correlations at even higher resolution (100-300 ka) when combined with integrated paleontological, chemostratigraphic, and geological data. This framework, will allow evaluation of models that invoke both intrinsic and extrinsic triggers for Metazoan evolution and the Cambrian radiation. In particular, many have pointed out that the first appearance of metazoan fossils follows a period characterized by dramatic climate fluctuations and large fluctuations in the sequestration of carbon. The oldest dated Metazoan fossils (Ediacarans) are younger than ca. 575 Ma and appear to just post-date the youngest Neoproterozoic glacial deposits ca. 580 Ma. The Doushantuo phosphatic rocks of south China preserve spectacular animal fossils but have not been precisely dated. Geochronological data from Neoproterozoic to Cambrian rocks in North America, Namibia, Great Britain, Siberia, and Oman indicate that Ediacaran fossils range from at least 575 Ma (Newfoundland) to <543 Ma (Namibia). Shelly fossils (Cloudina and Namacalathus) are > 548 to ca. 542 Ma. Complex trace-fossils occur at least as far back as 555 Ma (White Sea, Russia).
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • Molecular Clocks Fossil Evidence Is Sparse and Imprecise Rose Hoberman (Or Nonexistent)
    The Holy Grail Molecular Clocks Fossil evidence is sparse and imprecise Rose Hoberman (or nonexistent) Predict divergence times by comparing molecular data Rate Constancy? •Given 110 MYA – a phylogenetic tree – branch lengths (rt) – a time estimate for one (or more) node C D R M H • Can we date other nodes in the tree? • Yes... if the rate of molecular change is constant across all branches Page & Holmes p240 Protein Variability Evidence for Rate Constancy in Hemoglobin • Protein structures & functions differ – Proportion of neutral sites differ • Rate constancy does not hold across different protein types Large carniverous marsupial • However... – Each protein does appear to have a characteristic rate of evolution Page and Holmes p229 1 The Outline Molecular Clock • Methods for estimating time under a molecular Hypothesis clock – Estimating genetic distance • Amount of genetic difference between – Determining and using calibration points sequences is a function of time since – Sources of error separation. • Rate heterogeneity – reasons for variation • Rate of molecular change is constant – how its taken into account when estimating times (enough) to predict times of divergence • Reliability of time estimates • Estimating gene duplication times Measuring Evolutionary time with a Estimating Genetic Differences molecular clock 1. Estimate genetic distance If all nt equally likely, observed difference d = number amino acid replacements would plateau at 0.75 2. Use paleontological data to determine date of common ancestor Simply counting
    [Show full text]
  • Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory
    Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory By Linda C. Zeigenfuss, Dan Binkley, Gerald A. Tuskan, William H. Romme, Tongming Yin, Stephen DiFazio, and Francis J. Singer Open-File Report 2008–1337 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Zeigenfuss, L.C., Binkley, D., Tuskan, G.A., Romme, W.H., Yin, T., DiFazio, S., and Singer, F.J. 2008, Aspen Ecology in Rocky Mountain National Park: Age distribution, genetics, and the effects of elk herbivory: U.S. Geological Survey Open-File Report 2008–1337, 52 p. Available online only Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover photo courtesy of Carolyn Widman ii Contents Executive Summary............................................................................................................................................................1
    [Show full text]
  • MOLECULAR CLOCKS Definition Introduction
    MOLECULAR CLOCKS 583 Kishino, H., Thorne, J. L., and Bruno, W. J., 2001. Performance of Thorne, J. L., Kishino, H., and Painter, I. S., 1998. Estimating the a divergence time estimation method under a probabilistic model rate of evolution of the rate of molecular evolution. Molecular of rate evolution. Molecular Biology and Evolution, 18,352–361. Biology and Evolution, 15, 1647–1657. Kodandaramaiah, U., 2011. Tectonic calibrations in molecular dat- Warnock, R. C. M., Yang, Z., Donoghue, P. C. J., 2012. Exploring ing. Current Zoology, 57,116–124. uncertainty in the calibration of the molecular clock. Biology Marshall, C. R., 1997. Confidence intervals on stratigraphic ranges Letters, 8, 156–159. with nonrandom distributions of fossil horizons. Paleobiology, Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., 23, 165–173. and Tavaré, S., 2011. Dating primate divergences through an Müller, J., and Reisz, R. R., 2005. Four well-constrained calibration integrated analysis of palaeontological and molecular data. Sys- points from the vertebrate fossil record for molecular clock esti- tematic Biology, 60,16–31. mates. Bioessays, 27, 1069–1075. Yang, Z., and Rannala, B., 2006. Bayesian estimation of species Parham, J. F., Donoghue, P. C. J., Bell, C. J., et al., 2012. Best practices divergence times under a molecular clock using multiple fossil for justifying fossil calibrations. Systematic Biology, 61,346–359. calibrations with soft bounds. Molecular Biology and Evolution, Peters, S. E., 2005. Geologic constraints on the macroevolutionary 23, 212–226. history of marine animals. Proceedings of the National Academy Zuckerkandl, E., and Pauling, L., 1962. Molecular disease, evolution of Sciences, 102, 12326–12331.
    [Show full text]
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • Evidence for a Convergent Slowdown in Primate Molecular Rates and Its Implications for the Timing of Early Primate Evolution
    Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution Michael E. Steipera,b,c,d,1 and Erik R. Seifferte aDepartment of Anthropology, Hunter College of the City University of New York (CUNY), New York, NY 10065; Programs in bAnthropology and cBiology, The Graduate Center, CUNY, New York, NY 10016; dNew York Consortium in Evolutionary Primatology, New York, NY; and eDepartment of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved February 28, 2012 (received for review November 29, 2011) A long-standing problem in primate evolution is the discord divergences—that molecular rates were exceptionally rapid in between paleontological and molecular clock estimates for the the earliest primates, and that these rates have convergently time of crown primate origins: the earliest crown primate fossils slowed over the course of primate evolution. Indeed, a conver- are ∼56 million y (Ma) old, whereas molecular estimates for the gent rate slowdown has been suggested as an explanation for the haplorhine-strepsirrhine split are often deep in the Late Creta- large differences between the molecular and fossil evidence for ceous. One explanation for this phenomenon is that crown pri- the timing of placental mammalian evolution generally (18, 19). mates existed in the Cretaceous but that their fossil remains However, this hypothesis has not been directly tested within have not yet been found. Here we provide strong evidence that a particular mammalian group. this discordance is better-explained by a convergent molecular Here we test this “convergent rate slowdown” hypothesis in rate slowdown in early primate evolution.
    [Show full text]
  • The New Science of Human Evolution - Newsweek Technology -
    The New Science of Human Evolution - Newsweek Technology - ... http://www.msnbc.msn.com/id/17542627/site/newsweek/print/1/dis... MSNBC.com The New Science of Human Evolution The new science of the brain and DNA is rewriting the history of human origins. B y Sh ar on Be gl ey Newsweek March 19, 2007 issue - Unlike teeth and skulls and other bones, hair is no match for the pitiless ravages of weather, geologic upheaval and time. So although skulls from millions of years ago testify to the increase in brain size as one species of human ancestor evolved into the next, and although the architecture of spine and hips shows when our ancestors first stood erect, the fossil record is silent on when they fully lost their body hair and replaced it with clothing. Which makes it fortunate that Mark Stoneking thought of lice. Head lice live in the hair on the head. But body lice, a larger variety, are misnamed: they live in clothing. Head lice, as a species, go back millions of years, while body lice are a more recent arrival. Stoneking, an evolutionary anthropologist, had a hunch that he could calculate when body lice evolved from head lice by comparing the two varieties' DNA, which accumulates changes at a regular rate. (It's like calculating how long it took a typist to produce a document if you know he makes six typos per minute.) That fork in the louse's family tree, he and colleagues at Germany's Max Planck Institute for Evolutionary Anthropology concluded, occurred no more than 114,000 years ago.
    [Show full text]
  • A Review of Molecular-Clock Calibrations and Substitution Rates In
    Molecular Phylogenetics and Evolution 78 (2014) 25–35 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros ⇑ Juan Carlos Villarreal , Susanne S. Renner Systematic Botany and Mycology, University of Munich (LMU), Germany article info abstract Article history: Absolute times from calibrated DNA phylogenies can be used to infer lineage diversification, the origin of Received 31 January 2014 new ecological niches, or the role of long distance dispersal in shaping current distribution patterns. Revised 30 March 2014 Molecular-clock dating of non-vascular plants, however, has lagged behind flowering plant and animal Accepted 15 April 2014 dating. Here, we review dating studies that have focused on bryophytes with several goals in mind, (i) Available online 30 April 2014 to facilitate cross-validation by comparing rates and times obtained so far; (ii) to summarize rates that have yielded plausible results and that could be used in future studies; and (iii) to calibrate a species- Keywords: level phylogeny for Nothoceros, a model for plastid genome evolution in hornworts. Including the present Bryophyte fossils work, there have been 18 molecular clock studies of liverworts, mosses, or hornworts, the majority with Calibration approaches Cross validation fossil calibrations, a few with geological calibrations or dated with previously published plastid substitu- Nuclear ITS tion rates. Over half the studies cross-validated inferred divergence times by using alternative calibration Plastid DNA substitution rates approaches. Plastid substitution rates inferred for ‘‘bryophytes’’ are in line with those found in angio- Substitution rates sperm studies, implying that bryophyte clock models can be calibrated either with published substitution rates or with fossils, with the two approaches testing and cross-validating each other.
    [Show full text]
  • Adam, Anthropology and the Genesis Record: Taking Genesis Seriously in the Light of Contemporary Science1
    ISCAST Online Journal Pre-2005, Vol. 0 Adam, Anthropology and the Genesis Record: taking genesis seriously in the light of contemporary science1. Allan John Day Allan John Day is Emeritus Professor (Physiology) University of Melbourne, Australia, a Senior Academic Fellow, Ridley College, Melbourne and a Fellow of ISCAST(Institute for the Study of Christianity in an Age of Science and Technology). Abstract Much of the perceived conflict between science and Christian belief is not due to any intrinsic disagreement between these two approaches to truth, but rather to the conflict of emerging science with entrenched interpretations of Scripture. The history of the science/faith interface attests to this fact from the time of Galileo and before. It is important therefore, in interpreting Gen. 1œ3, to take into account the findings of contemporary science. This approach should be made, not as an attempt to conform science to the bible or the bible to science, but rather as one in which science serves along with history, culture and language as one of many inputs into the interpretative exercise. The important message of Genesis and of the role of Scripture as the Word of God is not compromised by such an approach, but rather enhanced and its relevance in the contemporary scene emphasised. In this paper an attempt is made to assess the findings of modern anthropology in relation to the interpretation of the Genesis account of Adam and the Fall. It is maintained, that neither a strictly literal interpretation, nor one which identifies an individual historic Adam with the Biblical Adam, is consistent with the findings of cultural and physical anthropology.
    [Show full text]
  • A Genetic Method for Dating Ancient Genomes Provides a Direct Estimate of Human Generation Interval in the Last 45,000 Years
    A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years Priya Moorjania,b,1, Sriram Sankararamanc,d,e, Qiaomei Fuc,f, Molly Przeworskia,g, Nick Pattersonb, and David Reichb,c,h,1 aDepartment of Biological Sciences, Columbia University, New York, NY 10027; bProgram in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142; cDepartment of Genetics, Harvard Medical School, Boston, MA 02115; dDepartment of Computer Science, University of California, Los Angeles, CA 90095; eDepartment of Human Genetics, University of California, Los Angeles, CA 90095; fKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; gDepartment of Systems Biology, Columbia University, New York, NY 10027; and hHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved March 31, 2016 (received for review July 25, 2015) The study of human evolution has been revolutionized by inferences available, as is becoming increasingly common (1). This method from ancient DNA analyses. Key to these studies is the reliable esti- relies on the insight that an ancient genome has experienced mation of the age of ancient specimens. High-resolution age esti- fewer generations of evolution compared with the genomes of its mates can often be obtained using radiocarbon dating, and, while living (i.e., extant) relatives. Because recombination occurs at an precise and powerful, this method has some biases, making it of in- approximately constant rate per generation, the accumulated terest to directly use genetic data to infer a date for samples that number of recombination events provides a molecular clock for have been sequenced.
    [Show full text]