Pest Control Technical Note: Termites

Total Page:16

File Type:pdf, Size:1020Kb

Pest Control Technical Note: Termites Pest Control Technical Note: Termites Number 7 Updated October 2013 Termites belong to the insect order Isoptera, The reproductive’s live in a central chamber in the meaning ‘equal wings’. nest where a female, or ‘Queen’, will lay many Termites are often wrongly referred to as ‘white thousands of eggs each year over her life span of ants’, however, as they are neither white; nor ants, approximately 10 years. Male, or ‘Kings’, are therefore this term should not be used. Termites are responsible for fertilising the Queens. Multiple in fact, closely related to cockroaches. reproductives are commonly observed. The digestive system of termites contains a variety The young termites develop in the colony by of micro-organisms which assist in the digestion of shedding cuticles at the end of each growth stage, the plant fibre cellulose. gradually changing until they reach the worker, Over 350 species of soldier or adult (winged form). If queens die, some termites are found in supplementary reproductive’s may carry on the Australia, only colony as neotenics. approximately 20, Reproductives are generally darker than workers commonly cause and soldiers. They damage to buildings. In have functional eyes Victoria there are five and their more robust species that cause problems to buildings and skin (cuticle) is able to wooden structures. resist the outside Although termites are generally considered to be environment. After destructive timber pests, they play important flight, unlike other ecological roles: providing nest holes for lizards, insects, the deciduous birds and possums; assisting in the breakdown of wings of termites are organic matter; returning nutrients to soil and; discarded and piles of assisting with soil aeration. shed wings are a good clue to termite Castes infestations. Termites are social insects, living and working Soldiers together within nests or colonies of various sizes. Termites take several different forms. Each form, or Soldiers have darker, larger heads than the other caste , has different functions to perform within the castes. They are blind, wingless, and have colony. They communicate by smell and touch. undeveloped reproductive organs. Alates Soldiers are tougher than the other castes and take Alates, meaning longer to die from most toxins, exposure, or ‘winged ones’, are the starvation. It is their role to defend the colony, if true adult termites. disturbed, while the damage is repaired by the They have eyes, workers. wings, darker colouring Soldiers exist in different forms. Most species have and are fertile. soldiers, with well developed jaws (mandibles) used Their wings are equal to crush attackers, such as ants. size and shape and twice the length of their body. Nastute soldiers occur in Nasustitermes species They shed after the colonising flight is made. Shed and are only rarely found as pests in Victoria. They wings are a good indication of termite presence. have a snout from which they eject a sticky solution which irritates and glues attackers. Phragmotic soldiers have a very large head which Reproductives can be wedged in tunnels to block attackers. The drywood termites, which use this strategy, are only These are the sexual forms of the colony including occasional introductions to Victoria. future kings and queens of colonies yet to be established. Department of Health Workers Lifecycle The workers account Termites undergo an incomplete metamorphosis in for the largest number their life cycle. of termites within the The lifecycle of a termite consists of four stages of colony and are development with young termites developing into therefore responsible four different castes. The temperature, food quality, for the most damage. and activity of the colony affect the interval over They gather food, which termites develop from egg to adult. groom other termites, construct tunnels and repair Termites develop by moulting or shedding their damage; in addition to tending to the Kings, outer cuticle once a growth period ceases. The Queens, and their young. These termites are Queen adds a new set of ovaries at each moult, her believed to work 24 hours a day throughout their 4- abdomen eventually becomes quite large, a year life span. condition referred to as physogastry. Worker termites are generally unpigmented. They Shortages of a particular caste create a hormonal are blind, wingless and have undeveloped imbalance within the colony. This is then corrected reproductive organs. by the development of new young termites into that caste. Eggs and young Termites hatch from eggs that have been tended by their nest mates in specially constructed nurseries. As soon as they are old enough, the young work within the colony where jobs change with age and maturity. Colonising flight Once a single colony becomes sufficiently large it produces winged reproductives which wait in specially constructed chambers until ready to leave the nest and undertake a colonising flight. They leave the nest as a swarm under conditions of high humidity, still air, and sometimes low light. Termites are not strong fliers and usually only fly up to 1km, although breezes and updrafts can carry them a lot further. Upon landing near a suitable nest site, the female sheds her wings and emits a calling scent. Males quickly respond. They dig in and over the next few weeks, mate and Habitat take care of their young until enough workers develop to take over the care roles. Termite nests and tunnels are kept moist as the New colonies are sometimes established via workers cannot stand low humidity for very long. budding. This is believed to occur when the The temperature within the nursery of a large nest extremities of the colony lose contact and become ranges between 10 °C and 35 °C but rarely varies independent. more than one degree a day. The relative humidity The Primary King and Queen are believed to emit is approximately 100%. The moisture required to hormones which suppress the sexual development maintain the temperature and humidity is obtained of the rest of the colony, however this control from the soil, leaking plumbing or decaying timber. breaks down if the territory is too large or contact with groups is lost. Page 2 Department of Health Common species The nasute soldiers of this genus are easily identified, particularly as they tend to appear when It is important to correctly identify the type of pest tunnels are damaged, rather than hiding inside like termite before beginning treatment. The other pest types. identification will help in understanding the habits of the colony, the location of the nest and will indicate Porotermes adamsoni the most appropriate method. As the soldiers of each colony possess such Our largest species is commonly found nesting in prominent features the termite species is most large pieces of timber, particularly older trees, and easily identified by examination of an individual of is most common in wet this caste. mountainous areas. This preference earns it the common Coptotermes name of Dampwood Termite. This genus of termites However, Porotermes are also is widely distributed commonly found in the dry foothills throughout Victoria. of Melbourne. They are responsible Porotermes are much larger than for more than 80% of the other pest species, but tend to live in smaller the termite damage colonies and do not construct shelter tubes or travel caused to buildings. far underground. The colony will often die once Coptotermes build discovered and dried, although remedial timber nests in trees, favouring preservatives such as boron salts are often used to eucalypts, stumps, ensure control. under concrete flooring, in wall cavities, or Schedorhinotermes enclosed verandahs. More than a million termites may be present within This genus occurs a single colony, however, half a million is a more throughout Australia but is commonly encountered maximum size. only found in the north of These termites usually travel at least 50m from the Victoria. colony in search of food via a series of underground Schedorhinotermes are destructive and relatively tunnels. nomadic, rather than maintaining a fixed central Coptotermes acinaciformis tend to recruit strong nest. numbers to new food sources and respond strongly A mature colony of Schedorhinotermes will have to baits. mandibulate soldiers of two distinct sizes, referred Coptotermes frenchi tend to explore widely for new to as “major” and “minor”. food sources and often feed lightly at multiple The major soldiers are up to 5.6mm in length while points. They respond less strongly to baits. the minor soldiers are only 3.6mm. The absence of The soldier caste of Coptoterm es is mandibulate major soldiers indicates that the colony is either with simple brown saber-like jaws. Soldiers weak or young. measure between 3.5mm and 6.5mm in length. When disturbed these soldiers eject a white rubbery glue-like substance from their pear-shaped heads Heterotermes ferox as a defence mechanism. Heterotermes are widely distributed throughout Australia, however, they Nasutitermes are not considered to be a major pest species except in the Northern The Nasutitermes are widely distributed throughout Territory. Australia, however, these species are of minor The small colonies attack fence posts, timber importance in Victoria where they are most flooring, and paling fences within a small radius of commonly found attacking garden timbers. the nest. Heterotermes ferox specialize in feeding Nasutitermes exitiosus is common north of the on small timbers on the soil surface and as a result divide. They construct are very commonly found. dark, thin-walled mound The soldiers of this species are up to 4.75mm in nests between 30cm length with long, dark jaws and distinctly long and 75cm above ground. parallel-sided heads. These mounds are generally up to 1m in diameter. Page 3 Department of Health Control methods their only method of entry, is over a designated perimeter inspection zone. Where possible, it is preferable to control colonies In practice, termites will avoid constructing shelter before installing remedial barriers.
Recommended publications
  • Molt Stage, Wing Bar Patterns and Digital Photography As Tools for Assessing Age Distribution and Recognizing Individuals of Great Grey and Snowy Owls
    Roar Solheim Molt stage, wing bar patterns and digital photography as tools for assessing age distribution and recognizing individuals of Great Grey and Snowy Owls PhD Thesis 2019 Faculty of Applied Ecology, Agricultural Sciences and Biotechnology 1 2 Preface My interest for owls started shortly after birds captured my fascination, when a small Pygmy Owl perched in a birch tree outside my classroom window. I was twelve, I was lost, and I have been lost to the world of owls ever since. I have been fortunate to meet all ten species of owls which regularly breed in Norway, and have had the opportunity to study several of them at close range. Since 1995 I have been employed as a Senior Curator in Zoology at the Agder Natural His­ tory Museum in Kristiansand, which in 2017 became an integrated university museum under Agder University. My position has made it possible to work in the border zone between life and death, combining studies of free living owls with skin studies in scientific museum collec­ tions. I am grately indepted for the opportunity my employers have granted me for these studies, and finally giving me time to compile my work into this PhD thesis. Petter Wabakken at Evenstad, Inland Norway University, has been a great friend and ispirator for many years, and we have shared passion and fascination for wildlife since our student days at the University of Oslo. He strongly urged me to appl y for the PhD studies at Evenstad, and I am very thankful for his thrust, and interest in my work.
    [Show full text]
  • Molting in Workers of the Formosan Subterranean Termite Coptotermes Formosanus$
    ARTICLE IN PRESS Journal of Insect Physiology 54 (2008) 155–161 www.elsevier.com/locate/jinsphys Molting in workers of the Formosan subterranean termite Coptotermes formosanus$ Ashok Rainaa,Ã, Yong Ihl Parka, Dale Gelmanb aFormosan Subterranean Termite Research Unit, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA bInsect Biocontrol Laboratory, USDA, ARS, Building 011A, Beltsville, MD 20705,USA Received 12 July 2007; received in revised form 30 August 2007; accepted 30 August 2007 Abstract The Formosan subterranean termite, Coptotermes formosanus, with its huge colonies, is a major urban pest in several southern states and Hawaii as well as in South Asia. Because of their cryptic nature (underground habitat) and very long life cycle, not much is known about molting in termite workers. In C. formosanus, the workers stop foraging and lose their gut fauna, respectively, approximately 10 and 5 days prior to ecdysis. In any given colony an average of 1.01% (range 0.6–1.8) of the workers were found to molt each day under laboratory conditions. Workers destined to molt become sluggish and their head capsules develop a mottled texture one day prior to ecdysis. Ecdysis was generally accomplished with the assistance of other workers, which also fed on the exuviae. Immediately after molting worker mandibles were light pink in color and became fully melanized approximately two days later. Gut fauna were acquired on the fourth day after molting. Flagellates were transferred as small encysted cells from other workers through proctodeal feeding. Juvenile hormone III titer ranged between 30–41 pg/mg bodyweight in all stages except in workers sampled 6 days prior to ecdysis.
    [Show full text]
  • THE TIMING of MOULTING in WILD and CAPTIVE STELLER SEA LIONS (EUMETOPIAS JUBATUS) by Raychelle G. Daniel B. Sc. Biology, Univers
    THE TIMING OF MOULTING IN WILD AND CAPTIVE STELLER SEA LIONS (EUMETOPIAS JUBATUS) by Raychelle G. Daniel B. Sc. Biology, University of Alaska Southeast, 1999 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Zoology August, 2003 We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA © Raychelle Daniel, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of _ The University of British Columbia Vancouver, Canada ABSTRACT I documented the timing and progression of the moult by sex and age class in a wild population of Steller sea lions (Eumetopias jubatus) on Lowrie Island, Alaska (Jul-Nov 2001) and from captive animals at the Vancouver Aquarium Marine Science Centre (1993-2000). In the wild, juveniles (ages 1-2 years) were the first to moult followed by adult females, bulls and pups. The mean date when juveniles started their moult was 21 Jun which was significantly different from the mean start date of 07 Aug for adult females, and differed from the mean start date for pups of 01 Sep (one month later).
    [Show full text]
  • Vol. 11 No. 1 V Ol
    Indian BIRDS | Vol. 11 No. 1 V OL . 11 N . 11 O . 1 Indian BIRDS Contents www.indianbirds.in VOL. 11 NO. 1 DATE OF PUBLICATION: 12 JANUARY 2016 1 Notes on the Great Grey Shrike (Laniidae: Lanius excubitor) complex in ISSN 0973-1407 north-western India: Variation, identification, and status Prasad Ganpule EDITOR: Aasheesh Pittie [email protected] 10 Early Indian bird collectors: ASSOCIATE EDITORS: V. Santharam, Praveen J. Jean Macé, collector during 1798–1803 Justin J. F. J. Jansen EDITORIAL BOARD Maan Barua, Anwaruddin Choudhury Bill Harvey, Farah Ishtiaq, Rajah Jayapal, Girish Jathar 13 Notes on fledglings of Spectacled Finch Ragupathy Kannan, Madhusudan Katti Callacanthis burtoni R. Suresh Kumar, Taej Mundkur, Rishad Naoroji Puja Sharma & Somendra Singh Prasad Ganpule, Suhel Quader Harkirat Singh Sangha, C. Sashikumar 17 Recovery of a ringed juvenile Eastern Imperial Eagle Manoj Sharma, S. Subramanya, K. S. Gopi Sundar Aquila heliaca at Sardarshahr, Thar Desert, India Harkirat Singh Sangha & Surat Singh Poonia CONTRIBUTING PHOTOGRAPHERS Clement Francis, Ramki Sreenivasan 19 Saker Falcon Falco cherrug in northern Sikkim, India LAYOUT & COVER DESIGN: K. Jayaram Anwaruddin Choudhury OffICE: P. Rambabu 20 A report of Black-necked Stork Ephippiorhynchus asiaticus from Amravati District, Maharashtra NEW ORNIS FOUNDATION Ashish Choudhari, Manohar Khode, G. A. Wagh & J. S. Wadatkar Registration No. 314/2004 21 First record of the Pompadour (‘Ashy-headed’) Green Pigeon Treron FOUNDER TRUSTEES pompadora conoveri/phayrei from Uttarakhand, India Zafar Futehally (1920–2013) Sanjay Sondhi, Ashish Kothari, Balwant Singh Negi, Bhupinder Singh, Aasheesh Pittie, V. Santharam Deep Chandra Joshi, Naveen Upadhyay, Puran Singh Pilkhwal & TRUSTEES Virender Singh Aasheesh Pittie, V.
    [Show full text]
  • Bridging the Gap Between Pupping and Molting Phenology: Behavioral and Ecological Drivers in Weddell Seals
    Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals Item Type Thesis Authors Beltran, Roxanne Santina Download date 10/10/2021 22:21:11 Link to Item http://hdl.handle.net/11122/9661 BRIDGING THE GAP BETWEEN PUPPING AND MOLTING PHENOLOGY: BEHAVIORAL AND ECOLOGICAL DRIVERS IN WEDDELL SEALS By Roxanne Santina Beltran, B.Sc., M.Sc. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences University of Alaska Fairbanks August 2018 APPROVED: Dr. Jennifer Burns, Committee Co-Chair Dr. Greg Breed, Committee Co-Chair Dr. J. Ward Testa, Committee Member Dr. Diane O’Brien, Committee Member Dr. Brian Barnes, Committee Member Dr. Kris Hundertmark, Chair Department o f Biology and Wildlife Dr. Leah Berman, Interim Dean College of Natural Science and Mathematics Dr. Michael Castellini, Dean o f the Graduate School Abstract In Antarctica, the narrow window of favorable conditions constrains the life history phenology of female Weddell seals (Leptonychotes weddellii) such that pupping, breeding, foraging, and molting occur in quick succession during summer; however, the carry-over effects from one life history event to another are unclear. In this dissertation, I characterize the phenological links between molting and pupping, and evaluate feeding behavior and ice dynamics as mechanistic drivers. First, I review the contributions of natural and sexual selection to the evolution of molting strategies in the contexts of energetics, habitat, function, and physiology. Many polar birds and mammals adhere to an analogous biannual molting strategy wherein the thin, brown summer feathers/fur are replaced with thick, white winter feathers/fur.
    [Show full text]
  • House Sparrows
    Notes All Notes submitted to British Birds are subject to independent review, either by the Notes Panel or by the BB Editorial Board.Those considered appropriate for BB will be published either here or on our website (www.britishbirds.co.uk) subject to the availability of space. Abnormal Reed Warbler chicks On 30th July 2004, at Rostherne Mere NNR, melanin type, leaving the remaining underlying Cheshire, MC located a Reed Warbler Acro- pigmentation unaffected. It is likely that this cephalus scirpaceus nest containing two would affect the retina and skin as described, as nestlings which, from their size and degree of well as the plumage of the bird. Abnormal pig- feathering, were estimated to be nine days old. mentation is usually associated with genetic Both birds were of identical size and were factors, but ingested toxins may also have been clearly Reed Warblers, but whereas one chick implicated. The gene for schizochroism is sex- had a typical appearance, its sibling looked linked, and in the wild manifests itself only in most unusual. The strange chick sat awkwardly females, which may explain why one chick was in the nest with bill pointing upwards. It was affected and not its sibling. partially sighted, with bright orange skin, legs Since 1996, MC has been aware of weakness and feet, and had a dull orange bill. Its entire in some legs of nestling Reed Warblers. The upperparts were uniform pale grey, while the affected legs have been soft and uncalcified; underparts were white, unlike those of the sometimes the legs have been bent. In all normal chick, which were cream.
    [Show full text]
  • Moulting Flight Feathers
    MOULT strikingA balance MOULTING FLIGHT FEATHERS TEXT & PHOTOGRAPHS PETER RYAN In the March/April and May/June 2014 issues of African Bird- life, Peter Ryan described how moult plays a key role in the annual cycles of birds. In the final article in this series, he ex- plores how birds replace their flight feathers to minimise the impact on flight, and how large birds cope with the challenges of moulting, given limits on the rate at which feathers grow. FLIGHT FEATHERS are the largest The gaps in the wings and tail during feathers on most birds and, because of moult do affect flight performance, but their importance for flight, much attention birds have evolved strategies to minimise is focused on their replacement. The first these costs. One of the simplest of these is to article in this series (March/April 2014) limit the number of feathers moulted at the discussed the extreme case of simultane- same time, depending on the importance of ous wing moult, when so many feathers flight to the bird in question. For example, are grown at once that the bird endures flycatchers generally moult fewer primar- Southern albatrosses tend to replace their a period of enforced flightlessness. Most ies at once than warblers, because they are primaries every two years. Immature birds birds adopt a more gradual approach, re- more reliant on aerial agility. The number moult P8–10 (and sometimes a few inner placing a few feathers at a time, which al- of feathers grown at the same time also de- primaries) sequentially in one year, and lows them to go about their daily activities pends on their position on the bird’s body P1–7 the following year, gradually replacing more or less as normal.
    [Show full text]
  • A Framework for Understanding Developmental Plasticity
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/23447015 Life history and development - A framework for understanding developmental plasticity... Article in Biological Reviews · September 2008 DOI: 10.1111/j.1469-185X.2008.00044.x · Source: PubMed CITATIONS READS 76 251 2 authors, including: Klaus Hartfelder University of São Paulo - Ribeirão Preto School of Medicine 130 PUBLICATIONS 5,474 CITATIONS SEE PROFILE All content following this page was uploaded by Klaus Hartfelder on 21 August 2017. The user has requested enhancement of the downloaded file. Biol. Rev. (2008), 83, pp. 295–313. 295 doi:10.1111/j.1469-185X.2008.00044.x Life history and development - a framework for understanding developmental plasticity in lower termites Judith Korb1*† and Klaus Hartfelder2 1 Biologie I, Universita¨t Regensburg, D-93040 Regensburg, Germany 2 Departamento de Biologia Celular e Molecular e Bioagentes Patogeˆnicos, Faculdade de Medicina de Ribeira˜o Preto, Universidade de Sa˜o Paulo, Ribeira˜o Preto, Brazil (E-mail: [email protected]) (Received 17 September 2007; revised 16 April 2008; accepted 08 May 2008) ABSTRACT Termites (Isoptera) are the phylogenetically oldest social insects, but in scientific research they have always stood in the shadow of the social Hymenoptera. Both groups of social insects evolved complex societies independently and hence, their different ancestry provided them with different life-history preadaptations for social evolution. Termites, the ‘social cockroaches’, have a hemimetabolous mode of development and both sexes are diploid, while the social Hymenoptera belong to the holometabolous insects and have a haplodiploid mode of sex determination.
    [Show full text]
  • Effects of Endocrine Disrupting Compounds and Temperature on the Moulting Frequency of the Freshwater Isopod Asellus Aquaticus L
    Effects on the moulting frequency of Asellus aquaticus 105 ACTA BIOLOGICA BENRODIS 13 (2006): 105-115 Effects of endocrine disrupting compounds and temperature on the moulting frequency of the freshwater isopod Asellus aquaticus L. (Isopoda: Asellota)* Effekte von hormonähnlich wirksamen Substanzen und Temperatur auf die Häutungsfrequenz der Süßwasserassel Asellus aquaticus L. (Isopoda: Asellota) LENNART WELTJE 1, 2 & JÖRG OEHLMANN 2 1 International Graduate School (IHI), Ecotoxicology Group, Markt 23, D-02763 Zittau, Germany, [email protected], corresponding author 2 J.W. Goethe University, Department of Ecology and Evolution – Ecotoxicology, Siesmayerstraße 70, D-60323 Frankfurt am Main, Germany Summary: The effects of the vertebrate endocrine disrupting compounds diuron, linuron, vinclo- zolin (pesticides), 17α-ethinylestradiol and tamoxifen (pharmaceuticals) on the moulting frequen- cy of the freshwater isopod Asellus aquaticus (L.) are described. In addition, the influence of temperature on moulting frequency was studied. Since moulting is under the control of the steroid hormone 20-hydroxyecdysone, effects may be expected of substances known to influence the steroid sex hormones (i.e. estradiol and testosterone) of vertebrates. Although the chemicals induced changes in moulting frequency (both stimulating and inhibiting effects were found), significant differences were not established. At 20 ºC, the moulting frequency was higher than at 15 °C, but again the difference was not significant. Consequently, improvements in the experimental set-up are discussed. It is concluded that experiments are best performed at a constant temperature, with young, isolated individuals of similar size and sex. Pesticides, moulting frequency, Asellus aquaticus Zusammenfassung: Effekte der wirbeltierhormonähnlich wirksamen Substanzen Diuron, Linu- ron, Vinclozolin (Pflanzenschutzmittel), 17α-Ethinylöstradiol und Tamoxifen (Arzneimittel) auf die Häutungsfrequenz der Süßwasserassel Asellus aquaticus (L.) werden beschrieben.
    [Show full text]
  • The Timing of Moulting in Wild and Captive Steller Sea Lions
    THE TIMING OF MOULTING IN WILD AND CAPTIVE STELLER SEA LIONS (EUMETOPIAS JUBATUS) by Raychelle G. Daniel B. Sc. Biology, University of Alaska Southeast, 1999 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Zoology August, 2003 We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA © Raychelle Daniel, 2003 ABSTRACT I documented the timing and progression of the moult by sex and age class in a wild population of Steller sea lions (Eumetopias jubatus) on Lowrie Island, Alaska (Jul-Nov 2001) and from captive animals at the Vancouver Aquarium Marine Science Centre (1993-2000). In the wild, juveniles (ages 1-2 years) were the first to moult followed by adult females, bulls and pups. The mean date when juveniles started their moult was 21 Jun which was significantly different from the mean start date of 07 Aug for adult females, and differed from the mean start date for pups of 01 Sep (one month later). Mean completion dates were also about one month apart (19 Sept for juveniles, 26 Oct for adult females and 17 Nov for pups). Duration of the moult was about 45 days for each age group (pups and adult females). However, duration of the moult for captive sea lions was longer (averaging 83.5 days) and differed among years and within age classes. Patterns of hair loss in the wild (i.e., the progression of the moult over the body surface) differed among (i) pups, (ii) juveniles and early moulting adult females, and (iii) bulls and later moulting adult females.
    [Show full text]
  • Induced Moulting
    POULTRY WELFARE STANDARDS AND GUIDELINES – INDUCED MOULTING SUPPORTING PAPER PUBLIC CONSULTATION VERSION Prepared by the Poultry Standards and Guidelines Drafting Group, Oct 2016 ISSUES Identify acceptable methods for induced moulting of hens when it is deemed necessary. RATIONALE Induced moulting is a husbandry practice used to extend the period of lay of chickens. The practice is not used routinely but may be needed in exceptional circumstances, for example: to replenish flock numbers in the event of a disease outbreak; where there is a limitation on available grower space; where there is a shortage in the availability of day old pullets; or when there is a restriction on the importation of breeder stock due to exotic disease outbreaks overseas which necessitates the moulting of grandparent flocks. Moulting is a normal process in birds. In their natural state, birds shed old plumage and grow new feathers in preparation for cold weather and migration. ‘There are times when birds in the wild do not eat in spite of having food readily available, e.g. during moulting, breeding, and egg incubation’ (Stevens, 1996, cited by Koelkebeck and Anderson, 2007). The environment for poultry housed for commercial egg production is constant with respect to temperature, lighting and feed, thus removing the normal seasonal influences. Induced moulting rejuvenates the reproductive cycle of the hen, extending her productive life. All hens in a flock are brought into moult at the same time, which sustains more efficient egg production and improves egg quality. Moulting results in the need to add 40-50% fewer hens per year than would be needed without induced moults (United Egg Producers, 2014).
    [Show full text]
  • The Action of Moulting Hormone and Juvenile Hormone at the Cellular Level in Rhodnius Proljxus
    J. Exp. Biol. (1963), 40. 231-245 231 hyith 8 text-figures Printed in Great Britain THE ACTION OF MOULTING HORMONE AND JUVENILE HORMONE AT THE CELLULAR LEVEL IN RHODNIUS PROLJXUS BY V. B. WIGGLESWORTH Agricultural Research Council Unit of Insect Physiology, Department of Zoology, Cambridge (Received 30 November 1962) In the course of a discussion on the mode of action of growth hormones in insects (Wigglesworth, 1957 a) a preliminary account was given of the cytological changes brought about by the moulting hormone in certain selected tissues. Further work, with the use of improved methods, has substantiated many of these earlier results; others require revision. Growth and moulting in Rhodnius are initiated by the meal of blood, which may amount to ten times the initial weight of the insect; and the chief difficulty in defining the action of the moulting hormone is that of differentiating between (i) the effects of distension of the abdomen, (ii) the effects of nutrition, and (iii) the true effects of the hormone itself. In the earlier work the method adopted for distinguishing between (ii) and (iii) was to decapitate the 4th-stage larva immediately after feeding and then to compare untreated decapitated larvae with similar larvae that had been injected with the purified moulting hormone ecdyson. In these experiments the first visible changes, enlargement of the nucleolus, increase in ribonucleoprotein (RNA) in the cytoplasm around the nuclei, and swelling of the mitochondria, were detectable within 6 hr. after injection of the hormone. By the end of 24 hr. the nucleolus had enlarged considerably, cytoplasmic RNA had increased strikingly and mitochondria were both swollen and multiplying.
    [Show full text]