Bridging the Gap Between Pupping and Molting Phenology: Behavioral and Ecological Drivers in Weddell Seals

Total Page:16

File Type:pdf, Size:1020Kb

Bridging the Gap Between Pupping and Molting Phenology: Behavioral and Ecological Drivers in Weddell Seals Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals Item Type Thesis Authors Beltran, Roxanne Santina Download date 10/10/2021 22:21:11 Link to Item http://hdl.handle.net/11122/9661 BRIDGING THE GAP BETWEEN PUPPING AND MOLTING PHENOLOGY: BEHAVIORAL AND ECOLOGICAL DRIVERS IN WEDDELL SEALS By Roxanne Santina Beltran, B.Sc., M.Sc. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences University of Alaska Fairbanks August 2018 APPROVED: Dr. Jennifer Burns, Committee Co-Chair Dr. Greg Breed, Committee Co-Chair Dr. J. Ward Testa, Committee Member Dr. Diane O’Brien, Committee Member Dr. Brian Barnes, Committee Member Dr. Kris Hundertmark, Chair Department o f Biology and Wildlife Dr. Leah Berman, Interim Dean College of Natural Science and Mathematics Dr. Michael Castellini, Dean o f the Graduate School Abstract In Antarctica, the narrow window of favorable conditions constrains the life history phenology of female Weddell seals (Leptonychotes weddellii) such that pupping, breeding, foraging, and molting occur in quick succession during summer; however, the carry-over effects from one life history event to another are unclear. In this dissertation, I characterize the phenological links between molting and pupping, and evaluate feeding behavior and ice dynamics as mechanistic drivers. First, I review the contributions of natural and sexual selection to the evolution of molting strategies in the contexts of energetics, habitat, function, and physiology. Many polar birds and mammals adhere to an analogous biannual molting strategy wherein the thin, brown summer feathers/fur are replaced with thick, white winter feathers/fur. Polar pinnipeds are an exception to the biannual molting paradigm; most rely on blubber for insulation and exhibit a single molt per year. Second, I describe the duration and timing of the Weddell seal molt based on data from 4,000 unique individuals. In adult females, I found that successful reproduction delays the molt by approximately two weeks relative to non- reproductive individuals. Using time-depth recorder data from 59 Weddell seals at the crucial time between pupping and molting, I report a striking mid-summer shallowing of seal dive depths that appears to follow a vertical migration of fishes during the summer phytoplankton bloom. The seals experience higher foraging success during this vertical shift in the prey distribution, which allows them to re-gain mass quickly before the molt. Across four years of study, later ice break-out resulted in later seal dive shallowing and later molt. In combination, the data presented in this dissertation suggest that molting, foraging, and pupping phenology are linked in Weddell seals and are affected by ice break-out timing. iii iv Table of Contents Page Abstract................................................................................................................................................. iii List of Figures .......................................................................................................................................xi List of Tables .......................................................................................................................................xv Preface...............................................................................................................................................xviii Acknowledgments .............................................................................................................................. xxi Dedication .........................................................................................................................................xxiii Chapter 1. General Introduction ...........................................................................................................1 1.2 Literature Cited ......................................................................................................................... 6 Chapter 2. Convergence of biannual moulting strategies across birds and mammals ................... 15 2.1 Abstract...................................................................................................................................... 15 2.2 Introduction ................................................................................................................................16 2.3 Functional roles and forms of pelage and plumage .................................................................17 2.4 Metabolic costs of moult ...........................................................................................................18 2.5 Selection pressures and moulting strategies ............................................................................20 2.6 Special considerations for aquatic species ..............................................................................24 2.7 Physiological mechanics of pelage and plumage replacement ............................................. 27 2.8 Feedbacks between moult and global change .........................................................................29 2.9 Conclusion ..................................................................................................................................30 v 2.10 Acknowledgments ...................................................................................................................31 2.11 Literature Cited ....................................................................................................................... 36 Chapter 3. Reproductive success influences molt phenology and subsequent colony attendance in Weddell seals ......................................................................................................................................53 3.1 Abstract......................................................................................................................................53 3.2 Introduction ................................................................................................................................54 3.3 Methods ......................................................................................................................................56 3.3.1 Fieldwork methods .............................................................................................................56 3.3.2 Analytical methods .............................................................................................................59 3.3.3 Estimating molt stage durations ........................................................................................59 3.3.4 Estimating molt initiation dates .........................................................................................60 3.3.5 Accounting for error propagation ..................................................................................... 61 3.3.6 Drivers of molt phenology .................................................................................................62 3.3.7 Interactions between pupping success/phenology and molt phenology ..........................63 3.4 Results........................................................................................................................................64 3.4.1 Demography of molting animals ...................................................................................... 64 3.4.2 Molt duration ...................................................................................................................... 64 3.4.3 Links between pupping phenology and molting phenology in one season ......................65 3.4.4 Inter-annual variation in ice dynamics, molt phenology, and colony attendance 66 vi 3.4.5 Links between pupping and molting phenology in one season and pupping in the next 67 3.5 Discussion ..................................................................................................................................67 3.5.1 Reproductive history affects molt phenology ...................................................................68 3.5.2 Inter-annual variation in ice dynamics, molt phenology, and colony attendance 70 3.5.3 Cross-year carryover effects between molting and pupping .......................................... 70 3.5.4 Implications of links between pupping and molting phenology .....................................72 3.6 Acknowledgements ...................................................................................................................73 3.7 Literature Cited ......................................................................................................................... 87 Chapter 4. Seal diving behavior suggests shallowing of fish distributions during sea-ice driven phytoplankton bloom s ........................................................................................................................ 97 4.1 Abstract......................................................................................................................................97 4.2 Introduction ................................................................................................................................98 4.3 Methods ......................................................................................................................................99 4.3.1 Field methods ....................................................................................................................
Recommended publications
  • Wehrmacht Uniforms
    Wehrmacht uniforms This article discusses the uniforms of the World uniforms, not included here, began to break away in 1935 War II Wehrmacht (Army, Air Force, and with minor design differences. Navy). For the Schutzstaffel, see Uniforms and Terms such as M40 and M43 were never designated by the insignia of the Schutzstaffel. Wehrmacht, but are names given to the different versions of the Modell 1936 field tunic by modern collectors, to discern between variations, as the M36 was steadily sim- plified and tweaked due to production time problems and combat experience. The corresponding German term for tunic is Feldbluse and literally translates “field blouse”. 1 Heer 1.1 Insignia Main article: Ranks and insignia of the Heer (1935– 1945) For medals see List of military decorations of the Third Reich Uniforms of the Heer as the ground forces of the Wehrmacht were distinguished from other branches by two devices: the army form of the Wehrmachtsadler or German general Alfred Jodl wearing black leather trenchcoat Hoheitszeichen (national emblem) worn above the right breast pocket, and – with certain exceptions – collar tabs bearing a pair of Litzen (Doppellitze “double braid”), a device inherited from the old Prussian Guard which re- sembled a Roman numeral II on its side. Both eagle and Litzen were machine-embroidered or woven in white or grey (hand-embroidered in silk, silver or aluminium for officers). Rank was worn on shoulder-straps except for junior enlisted (Mannschaften), who wore plain shoulder- straps and their rank insignia, if any, on the left upper sleeve. NCO’s wore a 9mm silver or grey braid around the collar edge.
    [Show full text]
  • Molt Stage, Wing Bar Patterns and Digital Photography As Tools for Assessing Age Distribution and Recognizing Individuals of Great Grey and Snowy Owls
    Roar Solheim Molt stage, wing bar patterns and digital photography as tools for assessing age distribution and recognizing individuals of Great Grey and Snowy Owls PhD Thesis 2019 Faculty of Applied Ecology, Agricultural Sciences and Biotechnology 1 2 Preface My interest for owls started shortly after birds captured my fascination, when a small Pygmy Owl perched in a birch tree outside my classroom window. I was twelve, I was lost, and I have been lost to the world of owls ever since. I have been fortunate to meet all ten species of owls which regularly breed in Norway, and have had the opportunity to study several of them at close range. Since 1995 I have been employed as a Senior Curator in Zoology at the Agder Natural His­ tory Museum in Kristiansand, which in 2017 became an integrated university museum under Agder University. My position has made it possible to work in the border zone between life and death, combining studies of free living owls with skin studies in scientific museum collec­ tions. I am grately indepted for the opportunity my employers have granted me for these studies, and finally giving me time to compile my work into this PhD thesis. Petter Wabakken at Evenstad, Inland Norway University, has been a great friend and ispirator for many years, and we have shared passion and fascination for wildlife since our student days at the University of Oslo. He strongly urged me to appl y for the PhD studies at Evenstad, and I am very thankful for his thrust, and interest in my work.
    [Show full text]
  • Tour Report 30 April – 6 May 2014
    Spring Birding in Sicily Naturetrek Tour Report 30 April – 6 May 2014 Little Terns Penduline Tit Purple Swamphen Sardinian Warbler Report compiled by Dave Nevitt & Marcus John Images supplied by Peter Spillett Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report The Somerset Levels Tour Leaders: Dave Nevitt Ornithologist/Naturalist Marcus John Ornithologist/Naturalist Participants Sue Beddows Roy Beddows Ian Fletcher Laura Clare Brian Morris Bev Minett-Smith Fran Smith Peter Spillett Eve Ellis Margaret Gorely Hugh Griffiths Jenny Griffiths Norma Parrack Ann Pardy Peter Somerville Isabelle Somerville Day 1 Wednesday 30th April The trip started with a flight from Gatwick, arriving at Catania an hour late at 19:30. On the flight the group were fortunate in having good views of Vesuvius and then the snow-capped Mount Etna as the flight descended. The group met up with Dave who was already in Sicily from leading the group the previous week. After loading up in our minibuses, we left Catania and made the hour’s journey to the Case del Feudo, where we were welcomed by Jassin who was to look after our day to day needs. Having settled in to our wonderful rooms, we assembled for our “light dinner”. We sampled for the first time the superb wines which are made on the premises. What a welcome! We retired, tired but replete. Day 2 Thursday 1st May As we had put the moth trap on last night, we had a look at our catch.
    [Show full text]
  • Camouflage in the Arctic
    24 1 Characters 2 23 22 3 4 21 Learning from Arctic Animals Adapting to Freezing Temperatures Most people are familiar with a green and brown camouflage The animals of the Arctic Circle adapt, or change, to pattern. But did you know the US Marine Corps developed a survive the cold, harsh winters. When the SNOW camouflage pattern to wear in snowy regions of the world? temperatures drop and snow falls, many animals in The pattern is called Disruptive Overwhite. It has a white the Arctic must change their summer fur to a winter background with gray digital shapes on nylon fabric. In addition, the nylon is lightweight, blocks wind, and repels the rain or snow. coat. Their food choices also change depending on The garments, such as shirts, pants, and jackets, do more than what is available in the snow-covered tundra, the assist with camouflage. In fact, they also help keep a person’s coldest of all habitats on Earth. body temperature comfortable with special features such as zippers, flaps, or drawstrings. Today, people can purchase these garments in many stores all over the world. 20 5 Changing Colors with the Seasons The fur of some Arctic animals changes from the woodland colors of the fall to pure white like winter snow. If they kept their woodland colors, these Arctic animals would stand out in the white snow and they would be unprotected. So, their fur must change to white. As a result, the animals can hide in the snow from their enemies and search safely for food.
    [Show full text]
  • Is the Sardinian Warbler Sylvia Melanocephala Displacing the Endemic Cyprus Warbler S
    Is the Sardinian Warbler Sylvia melanocephala displacing the endemic Cyprus Warbler S. melanothorax on Cyprus? PETER FLINT & ALISON MCARTHUR We firstly describe the history, status, distribution and habitats of the two species on the island. In the light of this the evidence for a decline in Cyprus Warbler numbers in the areas colonised by Sardinian Warbler is assessed and is found to be compelling. Possible reasons for this decline are examined; they are apparently complex, but primarily Cyprus Warbler appears to have stronger interspecific territoriality than Sardinian Warbler and may treat the latter territorially at least to some extent as a conspecific, with some tendency to avoid its home-ranges, especially their centres. Other important factors may be interspecific aggression from Sardinian Warbler (where its population density is high) which might reduce Cyprus Warbler’s ability to establish breeding territories; and competition from Sardinian Warbler for food and for autumn/winter territories. Also, Sardinian Warbler appears to be more efficient in exploiting the habitats of the endemic species, which may have reached a stage in its evolution as an island endemic where it is vulnerable to such an apparently fitter invading congener from the mainland. The changing climate on the island may also be a factor. We conclude that Sardinian Warbler does appear to be displacing Cyprus Warbler, and we recommend that the latter’s conservation status be re-assessed. INTRODUCTION Sardinian Warbler Sylvia melanocephala, previously known only as a winter visitor, was found breeding on Cyprus in 1992 (Frost 1995) and is rapidly spreading through the island (eg Cozens & Stagg 1998, Cyprus Ornithological Society (1957)/BirdLife Cyprus annual reports and newsletters, Ieronymidou et al 2012) often breeding at high densities within the same areas as the endemic Cyprus Warbler S.
    [Show full text]
  • Molting in Workers of the Formosan Subterranean Termite Coptotermes Formosanus$
    ARTICLE IN PRESS Journal of Insect Physiology 54 (2008) 155–161 www.elsevier.com/locate/jinsphys Molting in workers of the Formosan subterranean termite Coptotermes formosanus$ Ashok Rainaa,Ã, Yong Ihl Parka, Dale Gelmanb aFormosan Subterranean Termite Research Unit, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA bInsect Biocontrol Laboratory, USDA, ARS, Building 011A, Beltsville, MD 20705,USA Received 12 July 2007; received in revised form 30 August 2007; accepted 30 August 2007 Abstract The Formosan subterranean termite, Coptotermes formosanus, with its huge colonies, is a major urban pest in several southern states and Hawaii as well as in South Asia. Because of their cryptic nature (underground habitat) and very long life cycle, not much is known about molting in termite workers. In C. formosanus, the workers stop foraging and lose their gut fauna, respectively, approximately 10 and 5 days prior to ecdysis. In any given colony an average of 1.01% (range 0.6–1.8) of the workers were found to molt each day under laboratory conditions. Workers destined to molt become sluggish and their head capsules develop a mottled texture one day prior to ecdysis. Ecdysis was generally accomplished with the assistance of other workers, which also fed on the exuviae. Immediately after molting worker mandibles were light pink in color and became fully melanized approximately two days later. Gut fauna were acquired on the fourth day after molting. Flagellates were transferred as small encysted cells from other workers through proctodeal feeding. Juvenile hormone III titer ranged between 30–41 pg/mg bodyweight in all stages except in workers sampled 6 days prior to ecdysis.
    [Show full text]
  • EUROPEAN BIRDS of CONSERVATION CONCERN Populations, Trends and National Responsibilities
    EUROPEAN BIRDS OF CONSERVATION CONCERN Populations, trends and national responsibilities COMPILED BY ANNA STANEVA AND IAN BURFIELD WITH SPONSORSHIP FROM CONTENTS Introduction 4 86 ITALY References 9 89 KOSOVO ALBANIA 10 92 LATVIA ANDORRA 14 95 LIECHTENSTEIN ARMENIA 16 97 LITHUANIA AUSTRIA 19 100 LUXEMBOURG AZERBAIJAN 22 102 MACEDONIA BELARUS 26 105 MALTA BELGIUM 29 107 MOLDOVA BOSNIA AND HERZEGOVINA 32 110 MONTENEGRO BULGARIA 35 113 NETHERLANDS CROATIA 39 116 NORWAY CYPRUS 42 119 POLAND CZECH REPUBLIC 45 122 PORTUGAL DENMARK 48 125 ROMANIA ESTONIA 51 128 RUSSIA BirdLife Europe and Central Asia is a partnership of 48 national conservation organisations and a leader in bird conservation. Our unique local to global FAROE ISLANDS DENMARK 54 132 SERBIA approach enables us to deliver high impact and long term conservation for the beneit of nature and people. BirdLife Europe and Central Asia is one of FINLAND 56 135 SLOVAKIA the six regional secretariats that compose BirdLife International. Based in Brus- sels, it supports the European and Central Asian Partnership and is present FRANCE 60 138 SLOVENIA in 47 countries including all EU Member States. With more than 4,100 staf in Europe, two million members and tens of thousands of skilled volunteers, GEORGIA 64 141 SPAIN BirdLife Europe and Central Asia, together with its national partners, owns or manages more than 6,000 nature sites totaling 320,000 hectares. GERMANY 67 145 SWEDEN GIBRALTAR UNITED KINGDOM 71 148 SWITZERLAND GREECE 72 151 TURKEY GREENLAND DENMARK 76 155 UKRAINE HUNGARY 78 159 UNITED KINGDOM ICELAND 81 162 European population sizes and trends STICHTING BIRDLIFE EUROPE GRATEFULLY ACKNOWLEDGES FINANCIAL SUPPORT FROM THE EUROPEAN COMMISSION.
    [Show full text]
  • Song Characterization in the Spectacled
    This article was downloaded by: [87.222.215.181] On: 02 September 2012, At: 11:29 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Bioacoustics: The International Journal of Animal Sound and its Recording Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tbio20 Song characterization in the spectacled warbler (Sylvia conspicillata): a circum- Mediterranean species with a complex song structure Ana María Palmero a b c , Juan Carlos Illera a c & Paola Laiolo c a Ecology and Evolution Research Group (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain b Parasitology, Ecology and Genetics Department, Faculty of Biology, University of La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Canary Islands, Spain c Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus de Mieres, 33600, Mieres, Spain Version of record first published: 29 Mar 2012 To cite this article: Ana María Palmero, Juan Carlos Illera & Paola Laiolo (2012): Song characterization in the spectacled warbler (Sylvia conspicillata): a circum-Mediterranean species with a complex song structure, Bioacoustics: The International Journal of Animal Sound and its Recording, 21:3, 175-191 To link to this article: http://dx.doi.org/10.1080/09524622.2012.668772 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.
    [Show full text]
  • THE TIMING of MOULTING in WILD and CAPTIVE STELLER SEA LIONS (EUMETOPIAS JUBATUS) by Raychelle G. Daniel B. Sc. Biology, Univers
    THE TIMING OF MOULTING IN WILD AND CAPTIVE STELLER SEA LIONS (EUMETOPIAS JUBATUS) by Raychelle G. Daniel B. Sc. Biology, University of Alaska Southeast, 1999 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Zoology August, 2003 We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA © Raychelle Daniel, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of _ The University of British Columbia Vancouver, Canada ABSTRACT I documented the timing and progression of the moult by sex and age class in a wild population of Steller sea lions (Eumetopias jubatus) on Lowrie Island, Alaska (Jul-Nov 2001) and from captive animals at the Vancouver Aquarium Marine Science Centre (1993-2000). In the wild, juveniles (ages 1-2 years) were the first to moult followed by adult females, bulls and pups. The mean date when juveniles started their moult was 21 Jun which was significantly different from the mean start date of 07 Aug for adult females, and differed from the mean start date for pups of 01 Sep (one month later).
    [Show full text]
  • Vol. 11 No. 1 V Ol
    Indian BIRDS | Vol. 11 No. 1 V OL . 11 N . 11 O . 1 Indian BIRDS Contents www.indianbirds.in VOL. 11 NO. 1 DATE OF PUBLICATION: 12 JANUARY 2016 1 Notes on the Great Grey Shrike (Laniidae: Lanius excubitor) complex in ISSN 0973-1407 north-western India: Variation, identification, and status Prasad Ganpule EDITOR: Aasheesh Pittie [email protected] 10 Early Indian bird collectors: ASSOCIATE EDITORS: V. Santharam, Praveen J. Jean Macé, collector during 1798–1803 Justin J. F. J. Jansen EDITORIAL BOARD Maan Barua, Anwaruddin Choudhury Bill Harvey, Farah Ishtiaq, Rajah Jayapal, Girish Jathar 13 Notes on fledglings of Spectacled Finch Ragupathy Kannan, Madhusudan Katti Callacanthis burtoni R. Suresh Kumar, Taej Mundkur, Rishad Naoroji Puja Sharma & Somendra Singh Prasad Ganpule, Suhel Quader Harkirat Singh Sangha, C. Sashikumar 17 Recovery of a ringed juvenile Eastern Imperial Eagle Manoj Sharma, S. Subramanya, K. S. Gopi Sundar Aquila heliaca at Sardarshahr, Thar Desert, India Harkirat Singh Sangha & Surat Singh Poonia CONTRIBUTING PHOTOGRAPHERS Clement Francis, Ramki Sreenivasan 19 Saker Falcon Falco cherrug in northern Sikkim, India LAYOUT & COVER DESIGN: K. Jayaram Anwaruddin Choudhury OffICE: P. Rambabu 20 A report of Black-necked Stork Ephippiorhynchus asiaticus from Amravati District, Maharashtra NEW ORNIS FOUNDATION Ashish Choudhari, Manohar Khode, G. A. Wagh & J. S. Wadatkar Registration No. 314/2004 21 First record of the Pompadour (‘Ashy-headed’) Green Pigeon Treron FOUNDER TRUSTEES pompadora conoveri/phayrei from Uttarakhand, India Zafar Futehally (1920–2013) Sanjay Sondhi, Ashish Kothari, Balwant Singh Negi, Bhupinder Singh, Aasheesh Pittie, V. Santharam Deep Chandra Joshi, Naveen Upadhyay, Puran Singh Pilkhwal & TRUSTEES Virender Singh Aasheesh Pittie, V.
    [Show full text]
  • Improving the Conservation Status of Migratory Landbirds in the African-Eurasian Region
    CMS Distr: General CONVENTION ON UNEP/CMS/Resolution 10.27 MIGRATORY SPECIES Original: English IMPROVING THE CONSERVATION STATUS OF MIGRATORY LANDBIRDS IN THE AFRICAN-EURASIAN REGION Adopted by the Conference of the Parties at its Tenth Meeting (Bergen, 20-25 November 2011) Concerned at the rapid decline in many African-Eurasian migratory landbird species; Recognizing that Article II of the Convention requires all Parties to endeavour to conclude Agreements covering the conservation and management of migratory species listed in Appendix II of the Convention; Noting that CMS Article IV encourages Parties to conclude Agreements regarding populations of migratory species; Aware that five African-Eurasian migratory landbirds are listed on Appendix I of CMS, four of which are among 85 African-Eurasian migratory landbirds listed on Appendix II; Further aware that the species listed in Appendix I and Appendix II include more than 13 of the common trans-Saharan migrants known to have suffered the most severe population declines, such as several species of warblers, Sylviidae, the European Pied Flycatcher Ficedula hypoleuca, the Spotted Flycatcher Muscicapa striata, the Northern Wheatear Oenanthe oenanthe, the Whinchat Saxicola rubetra, the Common Nightingale Luscinia megarhynchos, the European Turtle Dove Streptopelia turtur turtur and the European Bee- eater Merops apiaster; Further recognizing that the five African-Eurasian landbird species listed on CMS Appendix I are all categorized as either Endangered or Vulnerable by the IUCN Red List 2010 (the Basra Reed-warbler Acrocephalus griseldis, the Spotted Ground-thrush Zoothera guttata, the Syrian Serin Serinus syriacus, the Blue Swallow Hirundo atrocaerulea and the Aquatic Warbler Acrocephalus paludicola) and that two Near Threatened species (the European Roller Coracias garrulus and the Semi-collared Flycatcher Ficedula semitorquata) are listed on Appendix II.
    [Show full text]
  • House Sparrows
    Notes All Notes submitted to British Birds are subject to independent review, either by the Notes Panel or by the BB Editorial Board.Those considered appropriate for BB will be published either here or on our website (www.britishbirds.co.uk) subject to the availability of space. Abnormal Reed Warbler chicks On 30th July 2004, at Rostherne Mere NNR, melanin type, leaving the remaining underlying Cheshire, MC located a Reed Warbler Acro- pigmentation unaffected. It is likely that this cephalus scirpaceus nest containing two would affect the retina and skin as described, as nestlings which, from their size and degree of well as the plumage of the bird. Abnormal pig- feathering, were estimated to be nine days old. mentation is usually associated with genetic Both birds were of identical size and were factors, but ingested toxins may also have been clearly Reed Warblers, but whereas one chick implicated. The gene for schizochroism is sex- had a typical appearance, its sibling looked linked, and in the wild manifests itself only in most unusual. The strange chick sat awkwardly females, which may explain why one chick was in the nest with bill pointing upwards. It was affected and not its sibling. partially sighted, with bright orange skin, legs Since 1996, MC has been aware of weakness and feet, and had a dull orange bill. Its entire in some legs of nestling Reed Warblers. The upperparts were uniform pale grey, while the affected legs have been soft and uncalcified; underparts were white, unlike those of the sometimes the legs have been bent. In all normal chick, which were cream.
    [Show full text]