This Dissertation Has Been Microfiimed Exactly As Received Target Imaging from Multiple-Frequency Radar Returns
Total Page:16
File Type:pdf, Size:1020Kb
71-27,587 f YOUNG, Jonathan David, 19^1- • TARGET IMAGING FROM MULTIPLE-FREQUENCY ! RADAR RETURNS. ! I I The Ohio State University, Ph.D., 1971 j Engineering, electrical ! University Microfilms, A XEROX Company, Ann Arbor, Michigan j i ...... _ , 4 THIS DISSERTATION HAS BEEN MICROFIIMED EXACTLY AS RECEIVED TARGET IMAGING FROM MULTIPLE-FREQUENCY RADAR RETURNS DISSERTATION Presented in P artial Fulfillm ent of the Requirements fo r the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jonathan David Young, B.E.E., M.Sc. ********* The Ohio State University 1971 Approved by Adviser Department of E lectrical Engineering PLEASE MOTE: Some pages have indistinct print. Filmed as received, UNIVERSITY MICROFILMS. ACKNOWLEDGMENTS The author would lik e to acknowledge the advice and encouragement of his graduate adviser, Professor E.M. Kennaugh, which were important to the success of this effort. Don A. Irons assisted in the micro wave system development, and the computer could not have been used and maintained without the assistance of Dr. Dean E. Svoboda. The scattering measurements were made by S.A. Redick. The constructive criticism during preparation of the manuscript by Professor Kennaugh and the other reading committee members, Professor Leon Peters, Jr. and Professor A.A. Ksienski, is greatly appreciated. VITA June 29, 1941 Born - Dayton, Ohio 1964 . B.E.E. {Summa Cum Laude) The Ohio State U niversity, Columbus, Ohio 1964-1965 . Research assistant, Antenna Laboratory, The Ohio State U niversity, Columbus, Ohio 1965 . M.Sc. The Ohio State University, Columbus, Ohio 1965-1971 . Graduate Research Associate, Electro- Science Laboratory, The Ohio State U niversity, Columbus, Ohio FIELDS OF STUDY Studies in Electromagnetic Field Theory Professor E.M. Kennaugh Studies in Antenna Systems Professor C.H. Walter Studies in Communications and Network Synthesis Professor W.C. Davis Studies in Applied Mathematics Professor H.D. Colson Studies in Classical Physics Professor W.H. Shaffer i i i PUBLICATIONS "Integrated Circuitry for Electronic Beam Steering of Wide Band Slot Antennafier Arrays," M.Sc. Thesis, The Ohio State University, 1965. ORAL PAPERS "Antennafiers for Beam-Steering Arrays," Fourteenth Annual Symposium on USAF Antenna Research and Development, University of Illin o is , 6-8 October 1964. "An Electronically Controlled Slot Antennafier," co-author, A.6 . Jen netti), Fifteenth Annual Symposium on USAF Antenna Research and Development, University of Illin o is , 12-14 October 1965. "Determination of the Constitutive Parameters by Scattered Fields of Spherical Bodies," (co-author, J.S. Yu), 1966 IEEE International Antennas and Propagation Symposium, Palo A lto, C alifornia, 5-7 December 1966. "Loop Antenna Systems For HF and VHF," (co-author, Dr. C.H. W alter), Antenna Workshop, U.S. Army Electronics Command, Fort Monmouth, New Jersey, 13-15 February 1968. "A New Approach to High-Frequency A irc ra ft Antennas," (co authors, T.L. Flaig and G.A. Richards), U.S. Army Advanced Planning Briefing and Symposium on Aviation Electronics, Fort Monmouth, New Jersey, 5-7 March 1968. "The Multi-Turn Loop Antenna," (co-authors, T.L. Flaig, G.A. Richards, G.A. T h ie le ), 18th Annual Symposium on USAF Antenna Research and Development, University of Illin o is , October 1968. CONTENTS Page ACKNOWLEDGMENTS......................................................................................................... i i VITA............................................................................................................................... i i i TABLES........................................................................................................................... vi i ILLUSTRATIONS............................................................................................................. ix Chapter I INTRODUCTION............................................................................................ 1 I I RAMP RESPONSE MEASUREMENTS............................................................... 8 A. A Radar Signature Measurement F a c ility 8 B. Approximate Ramp Response Waveforms 25 C. Correlation Between the Ramp Response and Geometrical Target Features 37 I I I THE APPROXIMATE LIMITING SURFACE TECHNIQUE FOR IMAGE GENERATION...................................................................... 44 A. An Imaging Technique 44 B. Image Input Waveforms from Measured Data 59 C. A Q uantitative Image Accuracy Indicator 61 D. Choice of a Scaling Constant fo r the Imaging Process 67 IV TARGET IMAGES USING THE LIMITING SURFACE TECHNIQUE 72 A. Images Using Calculated Ideal Profile Functions 72 B. Images Derived from Measured Radar Data 82 C. General Characteristics of the Basic Imaging Technique 85 D. Image Resolution of Target Features 87 V IMAGING STUDIES - EXPERIMENTAL DATA INPUT SIMPLE MODIFICATIONS FOR IMPROVED IMAGES ............... 90 A. Modification of the Hyperbolic Contour Shape 91 v CONTENTS (continued) Chapter Page B. Initial Target Orientation Estimation 93 C. An Ite ra tiv e Procedure fo r Modifying the Basic Technique 101 VI SUMMARY AND CONCLUSIONS................................................................... 108 APPENDIX A................................................................................................................. I l l APPENDIX B...................... ......................................................................................... 125 APPENDIX C................................................................................................................. 143 APPENDIX D................................................................................................................. 156 APPENDIX E................................................................................................ 179 BIBLIOGRAPHY............................................................................................................. 187 vi TABLES Page Estimated System Accuracy vs Frequency ......................... 21 In itia l System Accuracy Estimates .................................. 112 Improved System Accuracy Estimates ................................. 113 2:1 Cylinder, <p Polarization, Complex Return vs 0,, 114 2:1 Cylinder, e Polarization, Complex Return vs 6.. 114 Sphere-capped Cylinder, <j> Polarization, Complex Return vs e......................................................... 115 Sphere-capped Cylinder, e Polarization, Complex Return vs e......................................................... 115 Cone Cylinder, Polarization, Complex Return vs 0. 116 Cone Cylinder, e Polarization, Complex Return vs 0. 116 Step Cylinder, <f> Polarization, Complex Return vs 0. 117 Step Cylinder, e Polarization, Complex Return vs 0. 117 Cube, <}> = 0, <|> Polarization, Complex Return vs 0... 118 Cube, <p - 0°, 0 Polarization, Complex Return vs 0.. 118 Cube, $ = 150°, <p Polarization, Complex Return vs <f> 119 Cube, 4 = 15°, e Polarization, Complex Return vs e. 119 Cube, <j> = 30°, <f> Polarization, Complex Return vs 0. 120 Cube, <j> - 30°, 0 Polarization, Complex Return vs 0. 120 Cube, 4 = 45°, <t> Polarization, Complex Return vs 0, 121 Cube, 4 = 45°, 0 Polarization, Complex Return vs e. 121 vi i TABLES (continued) Table Page 20 60° Cone, <f> Polarization, Complex Return vs 0........................ 122 21 60° Cone, 0 Polarization, Complex Return vs 0........................ 122 22 Half Spheroid, <{> Polarization, Complex Return vs 0............. 123 23 Half Spheroid, 0 Polarization, Complex Return vs 0............. 123 24 Large Sphere-capped Cylinder with Stub <j> = 0, <|> Polarization, Complex Return vs e..................................... 124 25 Large Sphere-capped Cylinder with Stub, <J> = 90°, «j> Polarization, Complex Return vs 0..................................... 124 26 CPU Registers........................................................................................ 157 27 Sense Functions .................................................................................... 159 28 Action Taken on Overflow .................................................................. 161 29 CPU Instructions .................................................................................. 163 30 CPU Instruction Timing ...................................................................... 169 31 Control Character Codes.................................................................... 172 32 1/0 Instructions .................................................................................. 174 33 Teletype 1/0 Code............................................................................... 176 34 P lotter Code......................................................................................... 178 vi i i ILLUSTRATIONS Figure Page 1 Transmitter-receiver using target motion................................. 10 2 L-band source frequency spectrum ................................................. 11 3 Unmodulated harmonic generator frequency spectrum ............... n 4 Transmitted frequency spectrum ..................................................... 11 5 Target motion control system ......................................................... 15 6 "Minimal Informer" computer block diagram................................ 17 7 Computer measurement program block diagram............................. 18 8 Computer-controlled measurement flow chart.............................. 19 9 Computer-plotted raw measured data............................................. 20 10 2:1 circular