The Benthic Community of Offshore Sand Banks: a Literature Synopsis of the Benthic Fauna Resources in Potential Outer Continental Shelf Sand Mining Areas

Total Page:16

File Type:pdf, Size:1020Kb

The Benthic Community of Offshore Sand Banks: a Literature Synopsis of the Benthic Fauna Resources in Potential Outer Continental Shelf Sand Mining Areas THE BENTHIC COMMUNITY OF OFFSHORE SAND BANKS: A LITERATURE SYNOPSIS OF THE BENTHIC FAUNA RESOURCES IN POTENTIAL OUTER CONTINENTAL SHELF SAND MINING AREAS U.S. Geological Survey Outer Continental Shelf Ecosystem Program February 2004 USGS Scientific Investigation Report 2004-5198 (CEC NEGOM Program Investigation Report No. 2004-01, February 2004) Dr. R. Allen Brooks (Research Benthic Ecologist, USGS, Lead Principle Investigator) Dr. Susan S. Bell (Professor of Biology, University of South Florida) Ms. Carla N. Purdy (Benthic Ecologist, University of South Florida) Dr. Kenneth J. Sulak (Research Fish Biologist, USGS, Supervisory Investigator) In cooperation with the THE BENTHIC COMMUNITY OF OFFSHORE SAND BANKS: A LITERATURE SYNOPSIS OF THE BENTHIC FAUNA RESOURCES IN POTENTIAL OUTER CONTINENTAL SHELF SAND MINING AREAS Research Team USGS Coastal Ecology & Conservation Research Group USGS Florida Integrated Science Center, Center for Aquatic Resource Studies 7920 NW 71st St., Gainesville, FL, 32953 Dr. Robert A. Brooks (Research Benthic Ecologist, Lead Principal Investigator) [email protected], 352-264-3478 Dr. Kenneth J. Sulak (Research Fish Biologist) [email protected], 352-264-3500 University of South Florida Department of Biology 4202 E. Fowler Avenue, Tampa, FL 33620 Dr. Susan S. Bell (Professor of Biology) [email protected], 813-974-2542 Ms. Carla N. Purdy (Benthic Ecologist) [email protected], 813-974-5420 This USGS Project Report is an unpublished technical report. It is not copyrighted and may be cited and copied freely. It is available on CD-ROM upon request from the USGS Project Lead Scientist, and is also available in .ftp and .html formats online at: http://cars.er.usgs.gov/coastaleco/ Cover Photo: A digital image of the asteroid of the family Goniasteridae taken on a sand bottom at 95 m depth on the North Florida continental shelf, Gulf of Mexico, photo #3188-001, USGS CEC Cruise TM- 2002-01. Project Cooperation This study was undertaken to meet information needs identified by the Department of the Interior, U.S. Geological Survey (USGS), Outer Continental Shelf Ecosystem Program in concert with the Minerals Management Service (MMS). It was undertaken collaboratively by USGS and the University of South Florida. Disclaimer This report was prepared under the direction of, and in collaboration with, the Florida Integrated Science Center, Center for Aquatic Resource Studies, of the USGS. This report has been technically reviewed by USGS and MMS, and has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the USGS or MMS, nor does mention of trade names or commercial products constitute endorsement or recommendation for future use. Report Availability This report is also available as a downloadable Adobe© .pdf and .html formats from the Florida Integrated Science Center Website at http://cars.er.usgs.gov/coastaleco/ Copies of this report in CD format may also be obtained from: U.S. Department of the Interior Florida Integrated Science Center Center for Aquatic Resource Studies Coastal Ecology and Conservation Research Group Email: [email protected] or [email protected] Telephone: 352-378-8181 or 353-264-3478 Citation Brooks, R. A., S. S. Bell, C. N. Purdy, and K. J. Sulak. 2004. The benthic community of offshore sand banks: a literature synopsis of the benthic fauna resources in potential MMS OCS sand mining areas. USGS Outer Continental Shelf Studies Ecosystem Program Report USGS- SIR-2004-5198 (CEC NEGOM Program Investigation Report No. 2004-01, February 2004); Minerals Management Service, OCS Study MMS-2004. Literature Database Information on study sites, collection methods, results, and overall conclusions were extracted from relevant literature sources and organized into a database program The database used was ProCite© 5 designed by Thomson ISI Researchsoft, a literature reference database creation program. The ProCite database was named “Benthos Database” and is organized by the author’s last name. The main database screen displays the author(s) name, title, date, and key words upon opening. This main screen can be sorted and searched. The workform used for each record in the database was created specifically by the authors at USGS and is called MMS-Benthos. The MMS-Benthos workform contains a searchable “notes” field which contains summary information for each record in the database. Benthos Database Availability A complete copy of the database in Microsoft® Word 2002 format is provided in Appendix A of this report. The database is also available as a downloadable Adobe© .pdf and .html formats from the Florida Integrated Science Center Website at http://cars.er.usgs.gov/coastaleco/ Copies of the Benthos Database and MMS-Benthos workform are available in CD format and may be obtained from: U.S. Department of the Interior Florida Integrated Science Center Center for Aquatic Resource Studies Coastal Ecology and Conservation Research Group Email: [email protected] or [email protected] Telephone: 352-378-8181 or 353-264-3478 i TABLE OF CONTENTS Introduction 1 Background 1 Objectives 3 Methods 3 Results A. General Overview 6 B. Taxanomic Information 23 C. Collection Methods 71 D. Depth Relationships 71 E. Sediment-Animal Relationships 72 F. Feeding Type Communities 72 G. Seasonality 73 H. Dredging Impacts 73 I. Recovery and Recolonization 74 J. Dredging Recommendations 76 Discussion & Recommendations A. Study Types 76 B. Depth Relationships 77 C. Dominant Taxa 77 D. Sediments 78 E. Recovery and Recolonization 79 Conclusions A. Needs 80 B. Data Gaps 80 References 89 Appendix A Benthos ProCite Database 96 CEC Publications 319 USGS SIR-2004-5198 Benthic Community of Offshore Banks 1 PURPOSE Benthic habitat on the United States continental shelf of the Atlantic coast and Gulf of Mexico is not a homogeneous region of flat mud habitat, but also contains natural bathymetric highs including ridge and shoal features. Many of these ridge/shoal features (e.g., Heald Bank, Sabine Bank, Ship Shoal) are sand banks which have already been identified as containing exploitable deposits. For example, it is estimated that Ship Shoal, located off of Louisiana, contains 1.6 billion cubic yards of sand appropriate for renourishment and stabilization projects (Research Planning, Baird Associates & Applied Marine Services, 2001). As nearshore reserves become depleted, offshore sand resources are becoming more important and proposed projects to use these sediments call for a range of a hundred thousand to several million cubic yards of sand to be taken (EMSAGG, 2003). In 2002, the Minerals Management Service (MMS) received requests for 15 million cubic meters of sand to be used for projects off of Florida, Louisiana, Maryland, South Carolina, and Virginia (EMSAGG, 2003). Sediments mined from offshore sources are being used to keep up with increased beach renourishment cycles, repair storm damage, prevent erosion, and prevent wetland loss due to anthropogenic alteration and sea level rise (Research Planning, Baird Associates & Applied Marine Services, 2001). The Minerals Management Service (MMS) Leasing Division has the responsibility for determining the impact of mineral resource development excluding oil, gas, or sulfur. Before offshore sand resources are exploited, MMS is tasked with creating a synopsis which details not only what background information is known about potential sand mining areas but also what important information has not yet been collected. The U.S. Geological Survey (USGS), as part of a continuing long term policy to help address MMS information needs in the region, will undertake research to address those topics to provide an integrated basis of understanding of structure and function of key biological communities. This review serves as background information that MMS and others can utilize to estimate both the potential direct and indirect impacts of any proposed removal activities to natural sand banks on the Gulf of Mexico or U.S. Atlantic shelf. Direct impacts, potentially the most recognizable and easily detectable, include the actual removal of infauna and changes in sediment topography. Indirect impacts include those that affect both recolonization of the original benthic community (e.g., changes in sediment grain size) and higher trophic levels (e.g., fish response to changing prey) (Research Planning, Baird Associates & Applied Marine Services, 2001). BACKGROUND Sand areas on the outer continental shelf provide habitat for many benthic infaunal organisms (e.g., polychaetes, bivalves, amphipods) and epibenthic (e.g., crabs, gastropods) invertebrates (Hobbs, 2002; Posey et al., 1998). Species diversity and abundance are comparable to nearshore and intertidal areas (Posey et al., 1998). Along the continental shelf, the distribution of benthos may not be uniform, but rather patchily distributed. For example, Cutter and Diaz (2000) found the quality of benthic habitat to be higher in structured versus homogeneous sand areas. Part of this patchiness may be explained by microhabitat differences created by ridge and shoal structures (Sisson et al., 2002) which provide distinctive habitats in an otherwise structureless bottom. Raised sand banks provide unique microhabitat based upon a combination of sediment USGS SIR-2004-5198 Benthic Community of Offshore Banks 2 grain size and energy regime (Bergen et al. 2001). Thus differences in the resident benthic community may exist between areas on the bank, in the surrounding
Recommended publications
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • Biscuit Clypeaster Subdepressus (Echinodermata: Clypeasteroida)
    Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida) Bruno C. Vellutini1,2*, Alvaro E. Migotto1,2 1 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil, 2 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo, Brazil Abstract Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 260C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were *20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia.
    [Show full text]
  • Zootaxa 1285: 1–19 (2006) ISSN 1175-5326 (Print Edition) ZOOTAXA 1285 Copyright © 2006 Magnolia Press ISSN 1175-5334 (Online Edition)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Zootaxa 1285: 1–19 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1285 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) A checklist of the marine Harpacticoida (Copepoda) of the Caribbean Sea EDUARDO SUÁREZ-MORALES1, MARLEEN DE TROCH 2 & FRANK FIERS 3 1El Colegio de la Frontera Sur (ECOSUR), A.P. 424, 77000 Chetumal, Quintana Roo, Mexico; Research Asso- ciate, National Museum of Natural History, Smithsonian Institution, Wahington, D.C. E-mail: [email protected] 2Ghent University, Biology Department, Marine Biology Section, Campus Sterre, Krijgslaan 281–S8, B-9000 Gent, Belgium. E-mail: [email protected] 3Royal Belgian Institute of Natural Sciences, Invertebrate Section, Vautierstraat 29, B-1000, Brussels, Bel- gium. E-mail: [email protected] Abstract Recent surveys on the benthic harpacticoids in the northwestern sector of the Caribbean have called attention to the lack of a list of species of this diverse group in this large tropical basin. A first checklist of the Caribbean harpacticoid copepods is provided herein; it is based on records in the literature and on our own data. Records from the adjacent Bahamas zone were also included. This complete list includes 178 species; the species recorded in the Caribbean and the Bahamas belong to 33 families and 94 genera. Overall, the most speciose family was the Miraciidae (27 species), followed by the Laophontidae (21), Tisbidae (17), and Ameiridae (13). Up to 15 harpacticoid families were represented by one or two species only.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Inside:The Pleistocene Cooling Built
    THE PLEISTOCENE COOLING BUILT CHALLENGER MOUND, A DEEP-WATER CORAL MOUND IN THE NE ATLANTIC: INSIDE: SYNTHESIS FROM IODP EXPEDITION 307 PLUS: COUNCIL’S COMMENTS 2011 SPRING SEPM SECTION MEETINGS Special Publication #95 Cenozoic Carbonate Systems of Australasia Edited by: William A. Morgan, Annette D. George, Paul M. (Mitch) Harris, Julie A. Kupecz, and J.F. (Rick) Sarg The Cenozoic carbonate systems of Australasia are the product of a diverse assortment of depositional and post- depositional processes, reflecting the interplay of eustasy, tectonics (both plate and local scale), climate, and evolutionary trends that influenced their initiation and development. These systems, which comprise both land- attached and isolated platforms, were initiated in a wide variety of tectonic settings (including rift, passive margin, and arc-related) and under warm and cool-water conditions where, locally, siliciclastic input affected their development. The lithofacies, biofacies, growth morphology, diagenesis, and hydrocarbon reservoir potential of these systems are products of these varying influences. The studies reported in this volume range from syntheses of tectonic and depositional factors influencing carbonate deposition and controls on reservoir formation and petroleum system development, to local studies from the South China Sea, Indonesia, Kalimantan, Malaysia, the Marion Plateau, the Philippines, Western Australia, and New Caledonia that incorporate outcrop and subsurface data, including 3-D seismic imaging of carbonate platforms and facies, to understand the interplay of factors affecting the development of these systems under widely differing circumstances. This volume will be of importance to geoscientists interested in the variability of Cenozoic carbonate systems and the factors that controlled their formation, and to those wanting to understand the range of potential hydrocarbon reservoirs discovered in these carbonates and the events that led to favorable reservoir and trap development.
    [Show full text]
  • Laboratory Reference Module Summary Report LR22
    Laboratory Reference Module Summary Report Benthic Invertebrate Component - 2017/18 LR22 26 March 2018 Author: Tim Worsfold Reviewer: David Hall, NMBAQCS Project Manager Approved by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] MODULE / EXERCISE DETAILS Module: Laboratory Reference (LR) Exercises: LR22 Data/Sample Request Circulated: 10th July 2017 Sample Submission Deadline: 31st August 2017 Number of Subscribing Laboratories: 7 Number of LR Received: 4 Contents Table 1. Summary of mis-identified taxa in the Laboratory Reference module (LR22) (erroneous identifications in brackets). Table 2. Summary of identification policy differences in the Laboratory Reference Module (LR22) (original identifications in brackets). Appendix. LR22 individual summary reports for participating laboratories. Table 1. Summary of mis-identified taxa in the Laboratory Reference Module (LR22) (erroneous identifications in brackets). Taxonomic Major Taxonomic Group LabCode Edits Polychaeta Oligochaeta Crustacea Mollusca Other Spio symphyta (Spio filicornis ) - Leucothoe procera (Leucothoe ?richardii ) - - Scolelepis bonnieri (Scolelepis squamata ) - - - - BI_2402 5 Laonice (Laonice sarsi ) - - - - Dipolydora (Dipolydora flava ) - - - - Goniada emerita (Goniadella bobrezkii ) - Nebalia reboredae (Nebalia bipes ) - - Polydora sp. A (Polydora cornuta ) - Diastylis rathkei (Diastylis cornuta ) - - BI_2403 7 Syllides? (Anoplosyllis edentula ) - Abludomelita obtusata (Tryphosa nana ) - in mixture - - Spirorbinae (Ditrupa arietina ) - - - -
    [Show full text]
  • Meiofauna of the Koster-Area, Results from a Workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden)
    1 Meiofauna Marina, Vol. 17, pp. 1-34, 16 tabs., March 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 1611-7557 Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden) W. R. Willems 1, 2, *, M. Curini-Galletti3, T. J. Ferrero 4, D. Fontaneto 5, I. Heiner 6, R. Huys 4, V. N. Ivanenko7, R. M. Kristensen6, T. Kånneby 1, M. O. MacNaughton6, P. Martínez Arbizu 8, M. A. Todaro 9, W. Sterrer 10 and U. Jondelius 1 Abstract During a two-week workshop held at the Sven Lovén Centre for Marine Sciences on Tjärnö, an island on the Swedish west-coast, meiofauna was studied in a large variety of habitats using a wide range of sampling tech- niques. Almost 100 samples coming from littoral beaches, rock pools and different types of sublittoral sand- and mudflats yielded a total of 430 species, a conservative estimate. The main focus was on acoels, proseriate and rhabdocoel flatworms, rotifers, nematodes, gastrotrichs, copepods and some smaller taxa, like nemertodermatids, gnathostomulids, cycliophorans, dorvilleid polychaetes, priapulids, kinorhynchs, tardigrades and some other flatworms. As this is a preliminary report, some species still have to be positively identified and/or described, as 157 species were new for the Swedish fauna and 27 are possibly new to science. Each taxon is discussed separately and accompanied by a detailed species list. Keywords: biodiversity, species list, biogeography, faunistics 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Sweden; e-mail: [email protected], [email protected] 2 Research Group Biodiversity, Phylogeny and Population Studies, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Building D, B-3590 Diepenbeek, Belgium; e-mail: [email protected] 3 Department of Zoology and Evolutionary Genetics, University of Sassari, Via F.
    [Show full text]
  • Nuevas Especies De Prosobranquios Margineliformes (Mollusca: Gastropoda) Del Mar Caribe Y El Golfo De Mexico De Cuba
    Rev. Acad. Canar. Cienc, XVII (Num. 4), 117-122 (2005) (publicado en agosto de 2006) NUEVAS ESPECIES DE PROSOBRANQUIOS MARGINELIFORMES (MOLLUSCA: GASTROPODA) DEL MAR CARIBE Y EL GOLFO DE MEXICO DE CUBA Espinosa, J.* & J. Ortea^ Institute de Oceanologia, Avda. P n° 18406, Playa, La Habana, Cuba ^ Area de Zoologia. Dpto. BOS, Universidad de Oviedo. Espafia RESUMEN Se describen dos nuevas especies de moluscos prosobranquios margineliformes de las costas de Cuba, Intelcystiscus rancholunensis, especie nueva, de la costa sur, con una estructura de pliegues columelares muy caracteristica, y Prunum gijon, especie nueva, de la costa norte de La Habana, con un patron anatomico de caracteres afines al grupo del Prunum carneum (Storer, 1837). Palabras clave: Mollusca. Gastropoda, Intelcystiscus, Prunum, nuevas especies, Cuba. ABSTRACT Two new species of marginelid prosobranch molluscs from Cuba are described, Intelcystiscus rancholunensis, new species, from the south coast with characteristic colu- melar plaits and Prunum gijon, new species, from the north coast of La Habana, with simi- lar anatomical characters to the group oi Prunum carneum (Storer, 1837). Key words: Mollusca. Gastropoda, Intelcystiscus, Prunum, new species, Cuba 1. INTRODUCCION El presente trabajo es continuacion de una serie de articulos ya publicados (ESPI- NOSA& ORTEA [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] y [14]; ORTEA & ESPINOSA [15] y [16]) reaUzados con el objetivo de avanzar en el inventario de los moluscos marinos margineliformes del area Antillana. Se describen dos nuevas especies para la ciencia, una de la familia Cystiscidae, del mar Caribe, y la otra de la familia Marginellidae, del Golfo de Mexico, ambas procedentes de las costas de Cuba.
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • First Record and New Combination of a Rissoid Gastropod from Off South Brazil
    Biotemas, 22 (4): 251-254, dezembro de 2009 Short Communication251 ISSN 0103 – 1643 First record and new combination of a rissoid gastropod from off south Brazil Fabio Wiggers1* Inga Veitenheimer-Mendes PPG em Biologia Animal, Departamento de Zoologia Instituto de Biociências, Universidade Federal do Rio Grande do Sul *Corresponding author [email protected] Rua Lauro Linhares, 1600, apto 402 CEP 88036-002, Florianópolis – SC, Brazil Submetido em 03/03/2009 Aceito para publicação em 28/08/2009 Resumo Primeiro registro e nova combinação de um gastrópode Rissoídeo no sul do Brasil. Após mais de trinta e cinco anos de sua descrição original, Rissoa cruzi Castellanos & Fernández, 1974 é registrada pela primeira vez em águas Brasileiras. A análise das características da rádula e da concha indica que a espécie não está corretamente alocada no gênero Rissoa. Baseado na análise conquiliológica é proposta a realocação de R. cruzi no gênero Alvania Risso, 1826 e é feita uma comparação com outros rissoídeos. Unitermos: Atlântico Sul, Brasil, nova combinação, novo registro, Rissoidae Abstract After 35 years of its original description, Rissoa cruzi Castellanos & Fernández, 1974 is first recorded in southern Brazilian waters. An analysis of both shell and radular characteristics indicated that R. cruzi does not conform to its current generic assignment. Based on shell characters, R. cruzi is placed in the genus Alvania Risso, 1826. A comparison with other rissoids from the same region is also provided. Key words: Brazil, new combination, new record, Rissoidae, South Western Atlantic Introduction Ponder and Worsfold (1994) state that the species described by Castellanos and Fernandez (1974), although Rissoa cruzi Castellanos & Fernández, 1974 was not available to them for study, could be recognized first described based on material collected in the intestinal (based on its description and illustrations) as a taxon Astropecten brasiliensis tract of the asteoridean Müller & different than those dealt with in their report.
    [Show full text]
  • Background Document for Deep-Sea Sponge Aggregations 2010
    Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research.
    [Show full text]
  • Patterns of Bathymetric Zonation of Bivalves in the Porcupine Seabight and Adjacent Abyssal Plain, NE Atlantic
    ARTICLE IN PRESS Deep-Sea Research I 52 (2005) 15–31 www.elsevier.com/locate/dsr Patterns of bathymetric zonation of bivalves in the Porcupine Seabight and adjacent Abyssal plain, NE Atlantic Celia Olabarriaà Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, Southampton SO14 3ZH, UK Received 23 April2004; received in revised form 21 September 2004; accepted 21 September 2004 Abstract Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above 750 m marking the change from shelf species to bathyal species; (2) a zone from 750 to 1900 m that corresponds to the upper and mid- bathyalzones taken together; (3) a lowerbathyalzone from 1900 to 2900 m; (4) a transition zone from 2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyalspecies with very broad distributions.
    [Show full text]