Copepoda, Poecilostomatoida, Chondracanthidae), Parasitic on Tetraodontiform Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Copepoda, Poecilostomatoida, Chondracanthidae), Parasitic on Tetraodontiform Fishes RESURRECTION OF ACANTHOCANTHOPSIS HEEGAARD, 1945 (COPEPODA, POECILOSTOMATOIDA, CHONDRACANTHIDAE), PARASITIC ON TETRAODONTIFORM FISHES BY DANNY TANG1,3) and JU-SHEY HO2,4) 1) School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 2) Department of Biological Sciences, California State University, Long Beach, California 90840-3702, U.S.A. ABSTRACT The genus Acanthocanthopsis Heegaard, 1945 is considered valid based on examination of newly collected specimens of the type-species, A. quadrata Heegaard, 1945, from 2 tetraodontiform hosts (Pisces) captured in Australian waters. Pseudochondracanthus chilomycteri (Thomson, 1889) is transferred to Acanthocanthopsis. This latter genus can be differentiated from other chondracanthid genera by a combination of characters that include processes on the cephalosome, one pair of modified legs, a trunk bearing processes, a caudal ramus tipped with a small spine, a mandible armed with over 100 teeth on both margins, and a maxilliped claw with an accessory tooth in the female, as well as a vestigial first leg in the male. An amended diagnosis of Acanthocanthopsis is also provided. RÉSUMÉ Le genre Acanthocanthopsis Heegaard, 1945 est considéré comme valide après l’examen de spécimens de l’espèce-type, A. quadrata Heegaard, 1945, nouvellement prélevés sur deux hôtes Tétraodontiformes (Poissons) capturés dans les eaux australiennes. Pseudochondracanthus chilomycteri (Thomson, 1889) est transféré dans le genre Acanthocanthopsis. Ce dernier peut être différencié des autres genres de Chondracanthidae par une combinaison de caractères incluant des processus sur le céphalosome, une paire de pattes modifiées, un tronc portant des processus, une rame caudale terminée par une petite épine, une mandibule armée de plus de 100 dents sur les deux bords, et le croc du maxillipède portant une dent accessoire chez la femelle, ainsi qu’une première patte vestigiale chez le mâle. Une diagnose amendée d’Acanthocanthopsis est aussi fournie. 3) e-mail: [email protected] 4) e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2005 Crustaceana 78 (7): 809-818 Also available online: www.brill.nl 810 DANNY TANG & JU-SHEY HO INTRODUCTION Acanthocanthopsis was created by Heegaard (1945) within the Chondracanthi- dae, a family currently containing about 160 species of extremely modified par- asitic copepods, to accommodate Acanthocanthopsis quadrata Heegaard, 1945 removed from a porcupinefish (Diodon sp.) collected from Japan and housed in the Zoological Museum of Uppsala University. The diagnostic features of Acanthocanthopsis enumerated by Heegaard (1945) were the possession of trunk processes, bifurcate antennules, maxillae lacking teeth, and 2 pairs of bifurcate (bilobate) legs. He also suggested the inclusion of Chondracanthus cottunculi Rathbun, 1886, a chondracanthid having a fleshy, triangular antennule, trunk processes, and 2 pairs of bilobate legs, into Acanthocanthopsis. Based on the origi- nal description of A. quadrata, Ho (1970) doubted the validity of Acanthocanthop- sis, noting that the chondracanthid antennule may vary in appearance between con- generic species and A. quadrata lacked any postantennular features different from Chondracanthus Delaroche, 1811. Accordingly, Ho (1970) transferred A. quadrata to Chondracanthus, which was later upheld by Ho (1991) and Østergaard (2003). During examination of tetraodontiform fishes housed at both the Australian Museum and the Museum Victoria, chondracanthid copepods were recovered from the fins and/or branchial cavity wall of a porcupinefish and pufferfish. Close examination of these copepods revealed that they are conspecific with C. quadratus. The aim of this paper is to redescribe C. quadratus basedonthe newly collected material in order to clarify the taxonomic status of this taxon. The validity of Acanthocanthopsis is also reconsidered. MATERIALS AND METHODS The body surface, branchial cavity, and gills of numerous tetraodontiform fishes housed at both the Australian Museum (AM) and the Museum Victoria (NMV) were examined for parasitic copepods. Copepods removed from the tetraodontiform hosts were preserved in 70% ethanol. All copepod specimens were later soaked in lactic acid for at least 24 hr prior to examination using an Olympus BX-50 compound microscope. Two female and 4 male specimens were measured using an ocular micrometer. Five females and 1 male specimen were dissected and examined according to the wooden slide procedure of Humes & Gooding (1964). All drawings were made with the aid of a camera lucida. Voucher specimens were deposited at the Australian Museum and Museum Victoria..
Recommended publications
  • Title CYCLOPOID COPEPODS of the FAMILY
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CYCLOPOID COPEPODS OF THE FAMILY Title CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Author(s) Ho, Ju-Shey PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1975), 22(5): 303-319 Issue Date 1975-11-29 URL http://hdl.handle.net/2433/175898 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University CYCLOPOID COPEPODS OF THE FAMILY CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Ju-SHEY HO Department of Biology, California State University, Long Beach, California 90840 U.S.A. With Text-figures 1-10 Chondracanthidae is a family of highly transformed cyclopoid copepods that are found exclusively on marine demersal fish. Although a complete life history of this family of copepods is still unknown, it seems, judging from the available infor­ mation of their larval development, that the parasites do not require an intermediate host. Both adult and larva are found in the oral-branchial cavity of the fish, attaching to the host tissue by their powerful, hook-like second antenna. Although a few species are known to live in the nasal cavity, they have not been found on the body surface or fins of the fish. The male is characteristically dwarf and attaches to the genital area of the female throughout its life. In many species, the transformed female has a pair of small processes on the posteroventral surface of the trunk just in front of the genital segment. The pigmy male holds on to one of these two processes by its transformed hook-like second antennae.
    [Show full text]
  • ACTA ICHTHYOLOGICA ET PISCATORIA Jadwiga GRABDA
    ACTA ICHTHYOLOGICA ET PISCATORIA Vol. V, Faac. 1 Szczecin, 197 5 Jadwiga GRABDA,lhrahimAbdel Fattah Mahmoud SOLIMAN Parultolcgy COPEPODS - PARASITES OF THE GENUS MERLUCCIUS FROM THE ATLANTIC OCEAN AND MEDITERRANEAN SEA PASOZYTNICZE WIDl:.ONOGI RYB RODZAJU MERLUCCIUS Z OCEANU ATLANTYCKIEGO I MORZA SRODZIEMNEGO Institute of Ichthyology 3 species of parasitic copepods were found on Atlantic hakes caught off the western coasts of Europe, Africa, the Medi­ terranean Sea (off Alexandria), and North America. The species are: Chondracanthus fnerluccii, Brachiel/a merluccii and Parabrachiella australis. The parasites importance as indicators of the affinities between hakes is discussed. Various hypotheses concerning the origin of the genus Merluccius are presented. INTRODUCTION Studies on parasites as biological indicators of their host's population status, affinities, migrations, origin and zoogeographic distribution are a valuable method to explain many problems of biology of fish. The parasitic species of a narrow specificity are particularly interesting as indicators. The parasitic copepods of the genera Chondracanthus, Brachiella and Parabrachiellaappear to play such a role in hake. During the investigations on species variability within the genus Merluccius from the Atlantic and Mediterranean Sea (Soliman, 1973), the parasitic copepods were collected in order to utilize them as possible indicators of specific affiliations and affinities between the hakes investigated. MATERIALS AND METHOD The parasites were collected in 1971 � 1973 from mouth and gill cavities of the fishes exami1ied. 32 Jadwiga Grabda, Ibrahim Abdel Fattah Mahmoud Soliman Table 1 and the chart enclosed (Fig. 1) summarize number of fishesexamined, fishing grounds and catching time of particular hake stocks. 45' "1' tJt�H m-����;-��������-f-������������-"<t--==,__���11,' o' ,s· 45' Fig.
    [Show full text]
  • Have Chondracanthid Copepods Co-Speciated with Their Teleost Hosts?
    Systematic Parasitology 44: 79–85, 1999. 79 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Have chondracanthid copepods co-speciated with their teleost hosts? Adrian M. Paterson1 & Robert Poulin2 1Ecology and Entomology Group, Lincoln University, PO Box 84, Lincoln, New Zealand 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Accepted for publication 26th October, 1998 Abstract Chondracanthid copepods parasitise many teleost species and have a mobile larval stage. It has been suggested that copepod parasites, with free-living infective stages that infect hosts by attaching to their external surfaces, will have co-evolved with their hosts. We examined copepods from the genus Chondracanthus and their teleost hosts for evidence of a close co-evolutionary association by comparing host and parasite phylogenies using TreeMap analysis. In general, significant co-speciation was observed and instances of host switching were rare. The preva- lence of intra-host speciation events was high relative to other such studies and may relate to the large geographical distances over which hosts are spread. Introduction known from the Pacific, and 17 species from the Atlantic (2 species occur in both oceans; none are About one-third of known copepod species are par- reported from the Indian Ocean). asitic on invertebrates or fish (Humes, 1994). The Parasites with direct life-cycles, as well as para- general biology of copepods parasitic on fish is much sites with free-living infective stages that infect hosts better known than that of copepods parasitic on in- by attaching to their external surfaces, are often said to vertebrates (Kabata, 1981).
    [Show full text]
  • (Copepoda: Chondracanthidae), a Parasite of Bullseye Puffer Fish Sphoeroides Annulatus Revista De Biología Marina Y Oceanografía, Vol
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Fajer-Ávila, Emma Josefina; Guzman-Beltran, Leslie; Zárate-Rodríguez, Walter Camilo; Del Río- Zaragoza, Oscar Basilio; Almazan-Rueda, Pablo Pathology caused by adult Pseudochondracanthus diceraus (Copepoda: Chondracanthidae), a parasite of bullseye puffer fish Sphoeroides annulatus Revista de Biología Marina y Oceanografía, vol. 46, núm. 3, diciembre, 2011, pp. 293-302 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47922575001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 46, Nº3: 293-302, diciembre 2011 Article Pathology caused by adult Pseudochondracanthus diceraus (Copepoda: Chondracanthidae), a parasite of bullseye puffer fish Sphoeroides annulatus Patología causada por adultos de Pseudochondracanthus diceraus (Copepoda: Chondracanthidae) parásito del botete diana Sphoeroides annulatus Emma Josefina Fajer-Ávila1, Leslie Guzman-Beltran2, Walter Camilo Zárate-Rodríguez2, Oscar Basilio Del Río-Zaragoza1 and Pablo Almazan-Rueda1 1Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Mazatlán en Acuicultura y Manejo Ambiental, Av. Sábalo Cerritos s/n, Estero del Yugo, C.P. 82010, Mazatlán, Sinaloa, México. [email protected] 2Universidad de La Salle, Facultad de Medicina Veterinaria, Sede La Floresta, Carretera 7a No. 172-85, Bogotá DC, Colombia Resumen.- El copépodo condracántido Pseudochondracanthus diceraus es un parásito frecuente en las branquias del botete diana silvestre, Sphoeroides annulatus en Sinaloa, México.
    [Show full text]
  • Inventory of Parasitic Copepods and Their Hosts in the Western Wadden Sea in 1968 and 2010
    INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch NNIOZIOZ KKoninklijkoninklijk NNederlandsederlands IInstituutnstituut vvooroor ZZeeonderzoekeeonderzoek INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch Texel, April 2012 NIOZ Koninklijk Nederlands Instituut voor Zeeonderzoek Cover illustration The parasitic copepod Lernaeenicus sprattae (Sowerby, 1806) on its fish host, the sprat (Sprattus sprattus) Copyright by Hans Hillewaert, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license; CC-BY-SA-3.0; Wikipedia Contents 1. Summary 6 2. Introduction 7 3. Methods 7 4. Results 8 5. Discussion 9 6. Acknowledgements 10 7. References 10 8. Appendices 12 1. Summary Ectoparasites, attaching mainly to the fins or gills, are a particularly conspicuous part of the parasite fauna of marine fishes. In particular the dominant copepods, have received much interest due to their effects on host populations. However, still little is known on the copepod fauna on fishes for many localities and their temporal stability as long-term observations are largely absent. The aim of this project was two-fold: 1) to deliver a current inventory of ectoparasitic copepods in fishes in the southern Wadden Sea around Texel and 2) to compare the current parasitic copepod fauna with the one from 1968 in the same area, using data published in an internal NIOZ report and additional unpublished original notes. In total, 47 parasite species have been recorded on 52 fish species in the southern Wadden Sea to date. The two copepod species, where quantitative comparisons between 1968 and 2010 were possible for their host, the European flounder (Platichthys flesus), showed different trends: Whereas Acanthochondria cornuta seems not to have altered its infection rate or per host abundance between years, Lepeophtheirus pectoralis has shifted towards infection of smaller hosts, as well as to a stronger increase of per-host abundance with increasing host length.
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • Acanthochondria Cyclopsetta Pearse, 1952 and A. Alleni N. Sp. (Copepoda; Cyclopoida; Chondracanthidae) from Flatfish Hosts of Th
    Zootaxa 2657: 18–32 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Acanthochondria cyclopsetta Pearse, 1952 and A. alleni n. sp. (Copepoda; Cyclopoida; Chondracanthidae) from flatfish hosts of the U.S.A., with comments on the taxonomic position of A. zebriae Ho, Kim & Kumar, 2000 and A. bicornis Shiino, 1955 and the validity of Pterochondria Ho, 1973 DANNY TANG1,2,5, JULIANNE E. KALMAN3 & JU-SHEY HO4 1Department of Zoology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia 2Present address: Laboratory of Aquaculture, Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan. E-mail: [email protected] 3Cabrillo Marine Aquarium, 3720 Stephen M. White Drive, San Pedro, California, 90731, U.S.A. E-mail: [email protected] 4Department of Biological Sciences, California State University, Long Beach, California, 90840, U.S.A. E-mail: [email protected] 5Corresponding author Abstract A redescription of Acanthochondria cyclopsetta Pearse, 1952 (Copepoda; Chondracanthidae), hitherto reported only from the Mexican flounder, Cyclopsetta chittendeni Bean (Pleuronectiformes; Paralichthyidae), from Padre Island in the Gulf of Mexico, is presented based on female specimens from the spotfin flounder, Cyclopsetta fimbriata (Goode & Bean), collected off the coast of South Carolina, U.S.A. Furthermore, a description of the male of A. cyclopsetta is provided for the first time. Acanthochondria alleni n. sp. is also described based on specimens of both sexes collected from the fantail sole, Xystreurys liolepis Jordan & Gilbert (Pleuronectiformes: Paralichthyidae), caught in the Southern California Bight, U.S.A.
    [Show full text]
  • DEEPFISHMAN Document 5 : Review of Parasites, Pathogens
    DEEPFISHMAN Management And Monitoring Of Deep-sea Fisheries And Stocks Project number: 227390 Small or medium scale focused research action Topic: FP7-KBBE-2008-1-4-02 (Deepsea fisheries management) DEEPFISHMAN Document 5 Title: Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure Due date: none Actual submission date: 10 June 2010 Start date of the project: April 1st, 2009 Duration : 36 months Organization Name of lead coordinator: Ifremer Dissemination Level: PU (Public) Date: 10 June 2010 Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure. Matt Longshaw & Stephen Feist Cefas Weymouth Laboratory Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB 1. Introduction This review provides a summary of the parasites, pathogens and contaminant related impacts on deep sea fish normally found at depths greater than about 200m There is a clear focus on worldwide commercial species but has an emphasis on records and reports from the north east Atlantic. In particular, the focus of species following discussion were as follows: deep-water squalid sharks (e.g. Centrophorus squamosus and Centroscymnus coelolepis), black scabbardfish (Aphanopus carbo) (except in ICES area IX – fielded by Portuguese), roundnose grenadier (Coryphaenoides rupestris), orange roughy (Hoplostethus atlanticus), blue ling (Molva dypterygia), torsk (Brosme brosme), greater silver smelt (Argentina silus), Greenland halibut (Reinhardtius hippoglossoides), deep-sea redfish (Sebastes mentella), alfonsino (Beryx spp.), red blackspot seabream (Pagellus bogaraveo). However, it should be noted that in some cases no disease or contaminant data exists for these species.
    [Show full text]
  • Redalyc.A Review of Longnose Skates Zearaja Chilensis and Dipturus Trachyderma (Rajiformes: Rajidae)
    Universitas Scientiarum ISSN: 0122-7483 [email protected] Pontificia Universidad Javeriana Colombia Vargas-Caro, Carolina; Bustamante, Carlos; Lamilla, Julio; Bennett, Michael B. A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Universitas Scientiarum, vol. 20, núm. 3, 2015, pp. 321-359 Pontificia Universidad Javeriana Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49941379004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity.
    [Show full text]
  • And Endoparasite Communities of Wild Mediterranean Teleosts by a Metabarcoding Approach
    RESEARCH ARTICLE Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach 1 1 1 Mathilde ScheiflerID *, Magdalena Ruiz-RodrõÂguez , Sophie Sanchez-Brosseau , 1 2 3 4 Elodie Magnanou , Marcelino T. SuzukiID , Nyree West , SeÂbastien Duperron , Yves Desdevises1 1 Sorbonne UniversiteÂ, CNRS, Biologie InteÂgrative des Organismes Marins, BIOM, Observatoire OceÂanologique, Banyuls/Mer, France, 2 Sorbonne UniversiteÂ, CNRS, Laboratoire de Biodiversite et Biotechnologies Microbiennes, LBBM Observatoire OceÂanologique, Banyuls/Mer, France, 3 Sorbonne a1111111111 UniversiteÂ, CNRS, Observatoire OceÂanologique de Banyuls, Banyuls/Mer, France, 4 CNRS, MuseÂum a1111111111 National d'Histoire Naturelle, MoleÂcules de Communication et Adaptation des Micro-organismes, UMR7245 a1111111111 MCAM, MuseÂum National d'Histoire Naturelle, Paris, France a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellu- Citation: Scheifler M, Ruiz-RodrõÂguez M, Sanchez- lar and multicellular symbiont communities within hosts. In this study, we analyzed the non- Brosseau S, Magnanou E, Suzuki MT, West N, et specific reads obtained during a metabarcoding survey of the bacterial communities associ- al. (2019) Characterization of ecto- and ated to three different tissues collected from 13 wild Mediterranean teleost fish species. In endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS ONE total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to 14(9): e0221475. https://doi.org/10.1371/journal. skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nema- pone.0221475 todes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates Editor: Anne Mireille Regine Duplouy, Lund (Syndiniales).
    [Show full text]
  • Guide to the Parasites of Fishes of Canada Part II - Crustacea
    Canadian Special Publication of Fisheries and Aquatic Sciences 101 DFO - Library MPO - Bibliothèque III 11 1 1111 1 1111111 II 1 2038995 Guide to the Parasites of Fishes of Canada Part II - Crustacea Edited by L. Margolis and Z. Kabata L. C.3 il) Fisheries Pêches and Oceans et Océans Caned. Lee: GUIDE TO THE PARASITES OF FISHES OF CANADA PART II - CRUSTACEA Published by Publié par Fisheries Pêches 1+1 and Oceans et Océans Communications Direction générale Directorate des communications Ottawa K1 A 0E6 © Minister of Supply and Services Canada 1988 Available from authorized bookstore agents, other bookstores or you may send your prepaid order to the Canadian Government Publishing Centre Supply and Services Canada, Ottawa, Ont. K1A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. A deposit copy of this publication is also available for reference in public libraries across Canada. Canada : $11.95 Cat. No. Fs 41-31/101E Other countries: $14.35 ISBN 0-660-12794-6 + shipping & handling ISSN 0706-6481 DFO/4029 Price subject to change without notice All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the Publishing Services, Canadian Government Publishing Centre, Ottawa, Canada K1A 0S9. A/Director: John Camp Editorial and Publishing Services: Gerald J. Neville Printer: The Runge Press Limited Cover Design : Diane Dufour Correct citations for this publication: KABATA, Z. 1988. Copepoda and Branchiura, p. 3-127.
    [Show full text]