Adaptive Laboratory Evolution of Escherichia Coli K-12 MG1655 for Growth at High Hydrostatic Pressure

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Laboratory Evolution of Escherichia Coli K-12 MG1655 for Growth at High Hydrostatic Pressure UC San Diego UC San Diego Previously Published Works Title Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure. Permalink https://escholarship.org/uc/item/8hf561zk Journal Frontiers in microbiology, 5(JAN) ISSN 1664-302X Authors Marietou, Angeliki Nguyen, Alice TT Allen, Eric E et al. Publication Date 2014 DOI 10.3389/fmicb.2014.00749 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 07 January 2015 doi: 10.3389/fmicb.2014.00749 Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure Angeliki Marietou †,AliceT.T.Nguyen†, Eric E. Allen and Douglas H. Bartlett* Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA Edited by: Much of microbial life on Earth grows and reproduces under the elevated hydrostatic Mark Alexander Lever, Swiss pressure conditions that exist in deep-ocean and deep-subsurface environments. In this Federal Institute of Technology in study adaptive laboratory evolution (ALE) experiments were conducted to investigate the Zürich, Switzerland possible modification of the piezosensitive Escherichia coli for improved growth at high Reviewed by: Aude Picard, Harvard University, pressure. After approximately 500 generations of selection, a strain was isolated that USA acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, Christian Tamburini, Mediterranean this strain displayed growth properties and changes in the proportion and regulation of Institute of Oceanography, France unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. *Correspondence: These changes developed concomitantly with a change in the gene encoding the acyl Douglas H. Bartlett, Marine Biology Research Division, Center for carrier protein, which is required for fatty acid synthesis. Marine Biotechnology and Biomedicine, Scripps Institution of Keywords: adaptive laboratory evolution, Escherichia coli, high pressure, piezophile, acpP Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA e-mail: [email protected] †These authors have contributed equally to this work. INTRODUCTION (Yayanos and Pollard, 1969; Welch et al., 1993). Interestingly, Elevated hydrostatic pressure promotes reduced system volumes a moderate pressure of 30 MPa was sufficient to suppress gene and volume changes of activation in chemical equilibria and transcription (Sato et al., 1996). Protein synthesis was com- rates of reactions, respectively (Meersman and McMillan, 2014). pletely inhibited at 68 MPa; aminoacyl-tRNA binding, ribosome Microorganisms growing preferentially at elevated hydrostatic translocation, and ribosome stability have all been implicated as pressures exist in large portions of Earth’s biosphere including the basis of high pressure impacts on translation (Schwarz and deep-sea and deep-subsurface locations (Meersman et al., 2013). Landau, 1972; Groß and Jaenicke, 1990; Alpas et al., 2003). Cell Despite the fact that the growth attributes of these piezophiles division was affected at pressures ranging from 20 to 50 MPa appear to require relatively little evolutionary change (Prieur resulting in elongation of the cells and a filamentous morphology et al., 2009), increased hydrostatic pressure exerts pervasive effects since cell division is affected prior to cell growth and accumu- on many aspects of cellular function and the adaptations required lation of biomass (Zobell and Cobet, 1963). Pressure of 10 MPa remain incompletely defined (Lauro et al., 2008). Arguably the and higher affect flagellation by disrupting filament polymeriza- best understood adaptation is the need for bacterial piezophiles tion and flagellum rotation (Meganathan and Marquis, 1973). to maintain a sufficient proportion of unsaturated fatty acids in Other structural changes under high pressure include a compact their membranes as a means of tuning phase, viscosity, and/or nucleoid structure (Welch et al., 1993). ion permeability (Bartlett, 2002; Kawamoto et al., 2011). High pressure growth of E. coli at 30 or 50 MPa induces a Escherichia coli is the most studied piezosensitive microor- cascade of stress responses with the concomitant regulation of ganism with the ability to grow to pressures of up to 50 MPa a series of genes; such cascade networks include heat and cold (Zobell and Cobet, 1963). It has been successfully used as a stress responses (Welch et al., 1993; Welch and Bartlett, 1998; model organism to investigate the effects of increasing pressure Aertsen et al., 2004a; Ishii et al., 2005). Interestingly, heat shock on cell processes and structures. E. coli belongstotheclassof pre-treatment improved the pressure resistance of E. coli in sub- Gammaproteobacteria which includes a large proportion of the sequent high pressure treatment, suggesting that heat shock pro- characterized piezophiles, while as a foodborne pathogen has teins might play a protective role (Aertsen et al., 2004a). Finally, been subjected to high pressure pasteurization processes poten- sub-lethal pressure treatments (100–500 MPa) increased expres- tially promoting the emergence of piezoresistant strains (Vanlint sion of stress sigma factors and genes involved in spontaneous et al., 2012). High pressure affects many cellular processes mutations and triggered the SOS and oxidative stress responses in E. coli, including replication, transcription, and translation. (Aertsen et al., 2004b, 2005; Malone et al., 2006). Recently, Previous studies have demonstrated DNA synthesis inhibition at a genome wide screening approach confirmed the pleiotropic 50 MPa while RNA synthesis was abolished completely at 77 MPa effects of pressure on E. coli identifying a series of genes required www.frontiersin.org January 2015 | Volume 5 | Article 749 | 1 Marietou et al. E. coli growth at high pressure for growth at high pressure, including genes involved in DNA to cause the steel ball to break the glass cover slip and mix the replication, cell division, cytoskeleton, and cell envelope physiol- fixative with the culture at in situ pressure conditions. ogy (Black et al., 2013). For epifluorescence microscopy the fixed cells were immobi- In this report we investigate the feasibility of employing adap- lized onto a 0.2 μm polycarbonate membrane (EMD Millipore) tive laboratory evolution (ALE) techniques to drive the pheno- and stained using 4,6 -diamidino-2-phenylindole (DAPI) type of a model mesophile in the direction of piezophily. ALE is nucleic acid stain (Vector Laboratories, Inc). The stained samples a powerful tool that relies on the Darwinian principles of muta- were viewed at 1000 fold magnification on an Olympus BX51 flu- tion and selection (Pourmir and Johannes, 2012). In some cases orescence microscope (Olympus). TEM samples were post fixed the selections involve a single selective step (Vanlint et al., 2011), with 1% osmium and 2% of uranyl acetate and embedded in in others a few hundred to a few thousand generations (Lee Ducurpan at 60◦C for 36 h. Ultra-thin sections (60 nm) were cut et al., 2011), and in the extreme case of the long-term studies with a diamond knife on Leica Ultracut UCT Microtome and post of Lenski and colleagues they may proceed for more than 50,000 stained with uranyl acetate and lead. Images were captured on FEI generations (Barrick et al., 2009). Examples of ALE experiments Tecnai spirit at 80 KV. selecting for more extremophilic characteristics in mesophiles include increased salt tolerance (Zhou et al., 2013), increased FATTY ACID ANALYSIS radiation resistance (Harris et al., 2009), the conversion of a Fatty acid analysis was performed by MIDI Labs (Newark, DE) on mesophile into a facultative thermophile (Blaby et al., 2012)and frozen cell pellets harvested during the early logarithmic phase of the selection for survival to exposures of more than 2 gigapascals growth. Saponification, methylation, extraction, and base wash of pressure (Hauben et al., 1997). It should be noted that resis- were performed before the fatty acid methyl esters were ana- tance to ultra-high pressure does not confer improved growth at lyzed on an Agilent/HP 6890 gas chromatograph. Using a pattern elevated pressures (Hauben et al., 1997; Lauro et al., 2008). In this recognition software, Sherlock MIS, the fatty acid composition of study, following 505 generations of selection we have isolated a each sample was compared to a stored database. The software was strain with the ability to grow at 62 MPa and alter membrane able to identify each component of the analyzed sample, produc- fatty acid composition in response to pressure. A mutation has ing a composition report including the relative amount (%) of the been identified in a gene involved in lipid metabolism that could named fatty acids. contribute in the improved piezotolerance of the newly isolated strain. DNA PURIFICATION AND GENETIC ANALYSIS Cells growing at exponential phase were centrifuged at 14,000 × MATERIALS AND METHODS g for 2 min and the cell pellets were used for DNA purification. GROWTH CONDITIONS The Wizard Genomic DNA purification kit (Promega) was used E. coli K-12 MG1655 was grown in triplicate lineages (A, B, and C) according to the manufacturer’s instructions. The purified DNA under fermentative conditions at 37◦C using Luria Bertani (LB) was used as template
Recommended publications
  • Fig. S1 Diatom Abundance and Nutrient (Silicate, Nitrogen, Phosphate) Concentrations from March 1St to May 30Th 2016 at the Helgoland Sampling Site
    Supplemental Figure Legends: Fig. S1 Diatom abundance and nutrient (silicate, nitrogen, phosphate) concentrations from March 1st to May 30th 2016 at the Helgoland sampling site. Fig. S2: Bubble plots showing normalized read abundance of members of the Bacteroidetes (a), Gammaproteobacteria (b), and Rhodobacteriaceae (minimum read abundance 0.005%) for each substrate incubation and the unamended incubation at t0, 3d, and 6d for Hel_1 to Hel_4. NMDS plots (right) based on Bray-Curtis dissimilarity reveal separation in Bacteroidetes, Gammaproteobacteria, and Rhodobacteriaceae composition across bloom phases with time. ANOSIM (R:Vegan) indicates significant difference between dissimilarity across bloom phases. Fig. S3: Shifts in microbial communities (1% minimum abundance) during incubation with FLA-PS. Percentage change in relative read abundance of bacterial genera (and phyla) are shown; the bar chart compares t0 abundances of each genus to 3d and 6d abundances and shows increase or decrease in each genus. ARA = arabinogalactan, CA = carrageenan, CH = chondroitin sulfate, LA = laminarin, XY = xylan, NA = no addition control. (a) Hel_1; note there are no data for CA at 6d (b) Hel_2; Note there are no data for xylan because there are no data from the t0 sample; (c) Hel_3; there are no data for the NA at 6d. Note also that there are no chondroitin data because this substrate was not used at the Hel_3 sample point. (d) Hel_4. Fig. S4: Relative abundance (% of DAPI stained cells) of Alteromonas (black; ALT1413) and Bacteroidetes (gray; CF319a) during incubations Hel_1 to Hel_4 enumerated by FISH. Fig. S5: Percentage of total DAPI-stainable cells at t0 timepoint (~ 15 minutes after substrate addition) showing staining by laminarin, xylan, chondroitin sulfate, and arabinogalactan for Hel_1 to Hel_4.
    [Show full text]
  • Degrading Bacteria in Deep‐
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel) E. Gontikaki1 , L.D. Potts1, J.A. Anderson2 and U. Witte1 1 School of Biological Sciences, University of Aberdeen, Aberdeen, UK 2 Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK Keywords Abstract clone libraries, Faroe-Shetland Channel, hydrocarbon degradation, isolates, marine Aims: The aim of this study was the baseline description of oil-degrading bacteria, oil spill, Oleispira, sediment. sediment bacteria along a depth transect in the Faroe-Shetland Channel (FSC) and the identification of biomarker taxa for the detection of oil contamination Correspondence in FSC sediments. Evangelia Gontikaki and Ursula Witte, School Methods and Results: Oil-degrading sediment bacteria from 135, 500 and of Biological Sciences, University of Aberdeen, 1000 m were enriched in cultures with crude oil as the sole carbon source (at Aberdeen, UK. ° E-mails: [email protected] and 12, 5 and 0 C respectively). The enriched communities were studied using [email protected] culture-dependent and culture-independent (clone libraries) techniques. Isolated bacterial strains were tested for hydrocarbon degradation capability. 2017/2412: received 8 December 2017, Bacterial isolates included well-known oil-degrading taxa and several that are revised 16 May 2018 and accepted 18 June reported in that capacity for the first time (Sulfitobacter, Ahrensia, Belliella, 2018 Chryseobacterium). The orders Oceanospirillales and Alteromonadales dominated clone libraries in all stations but significant differences occurred at doi:10.1111/jam.14030 genus level particularly between the shallow and the deep, cold-water stations.
    [Show full text]
  • The Genome Analysis of Oleiphilus Messinensis ME102 (DSM 13489T)
    The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) ANGOR UNIVERSITY reveals backgrounds of its obligate alkane-devouring marine lifestyle Toshchakov, Stepan V.; Korzhenkov, Alexei A.; Chernikova, Tatyana; Ferrer, Manuel; Golyshina, Olga; Yakimov, Michail M.; Golyshin, Peter Marine Genomics DOI: 10.1016/j.margen.2017.07.005 PRIFYSGOL BANGOR / B Published: 01/12/2017 Peer reviewed version Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Toshchakov, S. V., Korzhenkov, A. A., Chernikova, T., Ferrer, M., Golyshina, O., Yakimov, M. M., & Golyshin, P. (2017). The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) reveals backgrounds of its obligate alkane-devouring marine lifestyle. Marine Genomics, 36, 41-47. https://doi.org/10.1016/j.margen.2017.07.005 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 30. Sep. 2021 1 2 The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) reveals backgrounds of 3 its obligate alkane-devouring marine lifestyle 4 5 6 Stepan V.
    [Show full text]
  • Oceanographic Controls of Hydrocarbon Degradation in the Gulf of Mexico
    OCEANOGRAPHIC CONTROLS OF HYDROCARBON DEGRADATION IN THE GULF OF MEXICO A Dissertation Presented to The Academic Faculty by Xiaoxu Sun In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Earth and Atmospheric Sciences Georgia Institute of Technology May 2018 COPYRIGHT © 2018 BY XIAOXU SUN OCEANOGRAPHIC CONTROLS OF HYDROCARBON DEGRADATION IN THE GULF OF MEXIC Approved by: Dr. Joel E. Kostka, Advisor Dr. Yuanzhi Tang School of Earth and Atmospheric Sciences School of Earth and Atmospheric Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Martial Taillefert Dr. David Hollander School of Earth and Atmospheric Sciences College of Marine Sciences Georgia Institute of Technology University of South Florida Dr. Ellery Ingall School of Earth and Atmospheric Sciences Georgia Institute of Technology Date Approved: March 13, 2018 ACKNOWLEDGEMENTS I would like to express my enormous gratitude to my advisor Dr. Joel Kostka for his support through my Ph.D. studies at Georgia Tech. I could not imagine to finish my Ph.D. without his wise guidance and tremendous support. Besides my advisor, I would like to thank all my committee members: Dr. Martial Taillefert, Dr. Ellery Ingall, Dr. Yuanzhi Tang, and Dr. David Hollander for their time and insightful opinions on my thesis. I would also thank all the people that I have collaborated with and the people that helped me in the past 6 years: Dr. Dai Sheng, Dr. Patrick Schwing, Dr. Isabel Romero, Dr. Roger Prince, and the crew members of R/V Weatherbird II and CCCG Amundsen Icebreaker. It was a great pleasure to spend time with my close colleagues: Dr.
    [Show full text]
  • Pressure-Retaining Sampler and High-Pressure Systems to Study Deep
    Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions Marc Garel, Patricia Bonin, Severine Martini, Sophie Guasco, Marie Roumagnac, Nagib Bhairy, Fabrice Armougom, Christian Tamburini To cite this version: Marc Garel, Patricia Bonin, Severine Martini, Sophie Guasco, Marie Roumagnac, et al.. Pressure- Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Condi- tions. Frontiers in Microbiology, Frontiers Media, 2019, 10, pp.453. 10.3389/fmicb.2019.00453. hal-02094373 HAL Id: hal-02094373 https://hal.archives-ouvertes.fr/hal-02094373 Submitted on 9 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. METHODS published: 09 April 2019 doi: 10.3389/fmicb.2019.00453 Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions Marc Garel 1, Patricia Bonin 1, Séverine Martini 2, Sophie Guasco 1, Marie Roumagnac 1, Nagib Bhairy 1, Fabrice Armougom 1 and Christian Tamburini 1* 1 Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France, 2 Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France The pelagic realm of the dark ocean is characterized by high hydrostatic pressure, low temperature, high-inorganic nutrients, and low organic carbon concentrations.
    [Show full text]
  • For Peer Review
    Extremophiles Draft Manuscript for Review Microbial diversity and adaptation to high hydrostatic pressure in deep sea hydrothermal vents prokaryotes Journal:For Extremophiles Peer Review Manuscript ID: EXT-15-Feb-0030.R1 Manuscript Type: Review Date Submitted by the Author: n/a Complete List of Authors: jebbar, mohamed; Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer Franzetti, Bruno; CNRS, Institut de Biologie Structurale Girard, Eric; CNRS, Institut de Biologie Structurale Oger, Phil; Laboratoire de Sciences de la Terre, Ecole Normale Superieure (Extreme) thermophilic microorganisms and their enzymology, Anaerobes, Keyword: Archaea, Hyperthermophiles, Piezophiles, Enzymes, Deep sea vent microbiology, Ecology, phylogeny, physiology of thermophiles Page 1 of 82 Extremophiles 1 2 3 1 Microbial diversity and adaptation to high hydrostatic pressure in deep sea 4 5 2 hydrothermal vents prokaryotes 6 7 3 Mohamed Jebbar 1,2, 3*, Bruno Franzetti 4,5,6, Eric Girard 4,5,6, and Philippe Oger 7 8 9 10 4 11 1 12 5 Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des 13 14 6 Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), 15 16 7 rue Dumont d’Urville, 29 280 Plouzané, France 17 18 8 2 CNRS, UMRFor 6197-Laboratoire Peer de MicrobiologieReview des Environnements Extrêmes 19 20 21 9 (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d’Urville, 29 22 23 10 280 Plouzané, France 24 25 11 3 Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements
    [Show full text]
  • Identification of Free-Living and Particle-Associated Microbial
    ORIGINAL RESEARCH published: 09 May 2016 doi: 10.3389/fmicb.2016.00665 Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench Jonathan Tarn 1, Logan M. Peoples 1, Kevin Hardy 2, James Cameron 3 and Douglas H. Bartlett 1* 1 Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2 Global Ocean Dynamics, Global Ocean Design, San Diego, CA, USA, 3 Avatar Alliance Foundation, Encino, CA, USA Edited by: Philippe M. Oger, Relatively few studies have described the microbial populations present in ultra-deep Centre National de la Recherche hadal environments, largely as a result of difficulties associated with sampling. Here Scientifique - Institut National des Sciences Appliquées, France we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and Reviewed by: particle-associated microbial communities recovered from locations within two of the Takuro Nunoura, deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) Japan Agency for Marine-Earth and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site Science and Technology, Japan Christian Tamburini, (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander Centre National de la Recherche positioned ∼1 m above the seafloor. The bacterial populations within the Mariana Trench Scientifique - Mediterranean Institute of Oceanography, France bottom water samples were dissimilar to other deep-sea microbial communities, though *Correspondence: with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Douglas H.
    [Show full text]
  • Title of Your Thesis
    Microbial communities associated with bacillary necrosis of Australian blue mussel (Mytilus galloprovincialis Lamarck): a study using model larval cultures by Tzu Nin Kwan BAqua (Hons) University of Tasmania Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy November 2017 This thesis is dedicated to Felix Kwan who seeded in me the love for science, Agnes Chin and Lucy Chin who mentored me. All inspired me to pursue the scientist’s dream. ii Declaration This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis. ------------------------------------------------------ Tzu Nin Kwan (15 November 2017) Statement of Ethical Conduct The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. ------------------------------------------------------ Tzu Nin Kwan (15 November 2017) Statement on Authority of Access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. iii Statement on published work The publisher of a paper comprising Chapters 2 and 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining unpublished content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.
    [Show full text]
  • Bacterioplankton Diversity and Distribution in Relation To
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447544; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea surface waters Angelina Cordone1, Giuseppe D’Errico2, Maria Magliulo1,§, Francesco Bolinesi1*, Matteo Selci1, Marco Basili3, Rocco de Marco3, Maria Saggiomo4, Paola Rivaro5, Donato Giovannelli1,2,3,6,7,8* and Olga Mangoni1,9 1 Department of Biology, University of Naples Federico II, Naples, Italy 2 Department of Life Sciences, DISVA, Polytechnic University of Marche, Ancona, Italy 3 National Research Council – Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy 4 Stazione Zoologica Anton Dohrn, Naples, Italy 5 Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy 6 Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA 7 Marine Chemistry & Geochemistry Department - Woods Hole Oceanographic Institution, MA, USA 8 Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan § now at University of Essex, Essex, UK 9 Consorzio Nazionale Interuniversitario delle Scienze del Mare (CoNISMa), Rome, Italy *corresponding author: Francesco Bolinesi [email protected] Donato Giovannelli [email protected] Keywords: bacterial diversity, bacterioplankton, phytoplankton, Ross Sea, Antarctica Abstract Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community.
    [Show full text]
  • Determining the Hierarchical Order by Which the Variables of Sampling Period, Dust Outbreaks Occurrence, and Sampling Location
    Determining the hierarchical order by which the variables of sampling period, dust outbreaks occurrence, and sampling location, can shape the airborne bacterial communities in the Mediterranean basin 5 Riccardo Rosselli 1, Maura Fiamma 2, Massimo Deligios 2, Gabriella Pintus 3, Grazia Pellizzaro 3, Annalisa Canu 3, Pierpaolo Duce 3, Andrea Squartini 4, Rosella Muresu 5, Pietro Cappuccinelli 2 10 1Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy 2Department of Biomedical Sciences-University of Sassari, Italy, 3Institute of Bioeconomy-National Research Council (IBE- CNR), Italy, 4Department of Agronomy Animals, Food, Natural Resources and Environment, DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova) Italy, 5Institute of Animal Production Systems in Mediterranean Environments-National Research Council (ISPAAM-CNR),Italy. 15 Correspondence: Andrea Squartini ([email protected] ) Keywords: Airborne microbiota, dust outbreaks, Mediterranean, Sardinia Abstract. An NGS-based taxonomic analysis was carried out on airborne bacteria sampled at ground level in two 20 periods (May and September) and two opposite locations on the North-South axis of the Sardinia Island. Located in a central position of the Mediterranean basin, Sardinia constitutes a suitable outpost to reveal possible immigration of bacterial taxa during transcontinental particle discharge between Africa and Europe. With the aim of verifying relative effects of dust outbreaks, sampling period and sampling site, on the airborne bacterial community composition, we compared air collected during dust-carrying meteorological events to that coming 25 from wind regimes not associated to long-distance particle lifting. Results indicated that: (a) higher microbial diversity and richness (118 vs 65 orders) and increased community evenness were observed in the campaign carried out in September in comparison to the one in May, irrespective of the place of collection and of the presence or absence of dust outbreaks.
    [Show full text]
  • Variability in the Composition of Pacific Oyster Microbiomes Across
    fmicb-10-00473 March 7, 2019 Time: 16:58 # 1 ORIGINAL RESEARCH published: 11 March 2019 doi: 10.3389/fmicb.2019.00473 Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 mvar Disease William L. King1,2, Nachshon Siboni2, Nathan L. R. Williams1, Tim Kahlke2, Khue Viet Nguyen1,2, Cheryl Jenkins3, Michael Dove4, Wayne O’Connor4, Justin R. Seymour2 and Maurizio Labbate1* 1 The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia, 2 Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia, 3 NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia, 4 NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia Edited by: Sebastian Fraune, Oyster diseases are a major impediment to the profitability and growth of the oyster University of Kiel, Germany aquaculture industry. In recent years, geographically widespread outbreaks of disease Reviewed by: caused by ostreid herpesvirus-1 microvariant (OsHV-1 mvar) have led to mass mortalities Mathias Wegner, among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research this disease have been largely focused on breeding programs, and although these (AWI), Germany have shown some success in producing oyster families with reduced mortality, the Eve Toulza, Université de Perpignan Via Domitia, mechanism(s) behind this protection is poorly understood. One possible factor is France modification of the C. gigas microbiome. To explore how breeding for resistance to *Correspondence: OsHV-1 mvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing Maurizio Labbate to characterize the bacterial communities associated with 35 C.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench Permalink https://escholarship.org/uc/item/3hb3k7cq Author Tarn, Jonathan Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Marine Biology by Jonathan Tarn Committee in charge: Professor Douglas Bartlett, Chair Professor Eric Allen Professor Brian Palenik 2016 The Thesis of Jonathan Tarn is approved and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Chair University of California, San Diego 2016 iii DEDICATION This thesis is dedicated to Dr. Douglas Bartlett, who taught me how to be a scientist. Thank for putting up with me. iv TABLE OF CONTENTS Signature Page .............................................................................................................................. iii Dedication ....................................................................................................................................
    [Show full text]