Protein Kinase D1-Dependent Phosphorylation of Dopamine D1 Receptor Regulates Cocaine-Induced Behavioral Responses

Total Page:16

File Type:pdf, Size:1020Kb

Protein Kinase D1-Dependent Phosphorylation of Dopamine D1 Receptor Regulates Cocaine-Induced Behavioral Responses Neuropsychopharmacology (2014) 39, 1290–1301 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org Protein Kinase D1-Dependent Phosphorylation of Dopamine D1 Receptor Regulates Cocaine-Induced Behavioral Responses 1,3 1,3 1,3 1,3 1 1 1 ,1,2 Ning Wang , Ping Su , Ying Zhang , Jie Lu , Baoming Xing , Kai Kang , Wenqi Li and Yun Wang* 1 Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National 2 Health and Family Planning Commission, Peking University Health Science Center, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances. Neuropsychopharmacology (2014) 39, 1290–1301; doi:10.1038/npp.2013.341; published online 15 January 2014 Keywords: cocaine addiction; protein kinase D1; dopamine D1 receptor; phosphorylation; conditioned place preference; locomotor activity INTRODUCTION inhibiting DA transporters (Chen et al, 2006; Giros et al, 1996; Schmitt and Reith, 2010). DA exerts its functions via Cocaine is one of the most abused psychostimulants used by binding to DA receptors, which can be grouped into two humans. Chronic, long-term use of cocaine can result in subclasses: D1-like receptors (D1R and D5R) and D2-like addiction, which is a state of compulsive drug use. At receptors (D2R, D3R, and D4R; Beaulieu and Gainetdinov, present, cocaine addiction has become a serious issue 2011). Both D1R and D2R, the most abundant subtypes of worldwide. However, there are currently no effective DA receptors in vivo, are critically involved in drug medications available for the treatment of cocaine addiction addiction and the reward pathway. However, activation of (Shorter and Kosten, 2011). Understanding the neurobiolo- D1R is an absolute requirement for the induction of many gical mechanisms responsible for cocaine addiction and of the cellular and behavioral effects of cocaine (Bateup identifying candidate targets for pharmacotherapeutic et al, 2010; Bateup et al, 2008; Bertran-Gonzalez et al, 2008; intervention is of great importance. Xu et al, 1994). It is well known that the mesolimbic dopamine (DA) The protein kinase D (PKD) family is composed of three system has a critical role in drug addiction and the reward members, PKD1/PKCm, PKD2, and PKD3/PKCn. To date, pathway. Cocaine induces a strong and rapid increase in PKD1 is the best-characterized isoform of this family extracellular DA in the mesolimbic reward circuit by (Rozengurt et al, 2005; Steinberg, 2012). PKD1 has a vital role in various important biological processes, including *Correspondence: Professor Y Wang, Neuroscience Research Institute cell proliferation and differentiation, vesicle trafficking and and Department of Neurobiology, The Key Laboratory for Neu- secretion, immune regulation and cardiac hypertrophy, and roscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing contraction (Rozengurt, 2011). In the nervous system, we 100191, China, Tel/Fax: +86 10 82801119, E-mail: [email protected] first found that PKD1 has an important role in inflamma- 3These authors contributed equally to this work. tory heat hyperalgesia through an interaction with transient Received 28 August 2013; revised 12 December 2013; accepted 13 receptor potential vanilloid 1 (Wang et al, 2004; Zhu et al, December 2013; accepted article preview online 23 December 2013 2008). Subsequently, studies by us and others have shown PKD1, dopamine D1 receptor, and cocaine addiction N Wang et al 1291 that PKD1 also participates in other nervous system bilaterally into the specific brain regions, and the peptide processes, including neuronal development (Bisbal et al, was administered in 4 min (0.25 ml/min) followed by an 2008; Yin et al, 2008), neuroprotection (Stetler et al, 2012), additional 1 min to allow diffusion before the injection needle and learning (Fu et al, 2009). Although the function of was taken out. PKD1 has been extensively studied in a variety of cellular models, its physiological role, especially in the nervous shRNA Lentivirus system, is largely unknown. Herein, we report the following: (1) PKD1 modulates GFP-PKD1-shRNA lentivirus was constructed and amplified cocaine-induced behaviors via phosphorylating D1R at by Genechem (Shanghai, China). The sequence 50-GGTTCT serine 421 (S421); (2) PKD1 potentiates the surface GGACAGTTCGGAA-30 was connected to the U6-vshRNA- localization of D1R and downstream extracellular signal- UBI-GFP. Lentivirus expressing shRNA targeting a non- regulated kinase (ERK) signaling in D1R-transfected cell specific sequence were used as controls. For in vivo line; (3) the cell-permeable Tat fusion-peptide targeting knockdown of PKD1, 1 Â 108 lentiviral particles were S421 (Tat-S421), targeting phosphorylation of S421 of D1R, injected bilaterally into the dorsal striatum. Five days later, exhibits an inhibitory effect on cocaine-induced behaviors. further experiments were performed. Given the pressing need for effective disease-modifying treatments for addiction, the identification of the molecular Cell Culture and Transfection basis of cocaine addiction and the anti-addiction effects of Tat-S421 are highly valuable findings. HEK 293A cells were maintained in DMEM plus 10% fetal bovine serum (Hyclone, Logan, UT) at 37 1Cin5%CO2. Transfections of cells were performed with Lipofectamine MATERIALS AND METHODS 2000 (Invitrogen). Cells were used 24–36 h post transfection. Antibodies Anti-phospho-D1R (p-S421) antibody was custom-made by Cell Surface Biotinylation Assay and Western Blot GL Biochem (Shanghai, China). Anti-PKD1 antibody (sc-639), Analysis anti-D1R antibody (sc-14001), and anti-ERK1/2 antibody We performed the cell surface biotinylation assay and (sc-93) were purchased from Santa Cruz Biotechno- western blotting as previously described (Xing et al, 2012). logy (Santa Cruz, CA). Anti-phospho-PKD1 (p-S744/748) Immunoreactive bands were scanned and analyzed quanti- antibody (2054S) and anti-phospho-ERK1/2 antibody tatively by densitometry with Quantity One Software (4370S) were purchased from Cell Signaling Technology (Bio-Rad, Hercules, CA). (Danvers, MA). Anti-b-actin antibody (A5316) was pur- chased from Sigma (St Louis, MO). Anti-transferrin receptor antibody (13–6800) was purchased from Invitrogen In Vitro Kinase Assay (Carlsbad, CA). Anti-GFP antibody was purchased from The in vitro kinase assay was conducted as previously Roche Diagnostics (Indianapolis, IN). described (Yang et al, 2007). Briefly, 20 ng of active PKD1 (Upstate Biotechnology, Lake Placid, NY) was resuspended Plasmid Construction and Mutation in assay buffer to a volume of 25 ml and a final concentration of 0.8 ng/ml. To initiate the reaction, 10 ml of the phosphor- The EYFP-N1-D1R construct was a gift from Professor ylation mixture (assay buffer containing 5 mCi of [g-32P]ATP Xuechu Zhen at Soochow University. The construct to fuse and one of the following GST fusion proteins: GST, GST- glutathione S-transferase (GST) with the carboxyl terminus D1R-CT, or GST-D1R-CT S421A) was added. The mixture of the D1R (GST-D1R-CT) was generated using the EcoRI/ was incubated at 30 1C for 30 min, and the reaction was XhoI sites and subcloned into pGEX-5x-1 (GE Healthcare, terminated by the addition of SDS-PAGE sample buffer. Little Chalfont, UK). The construct myc-his-PKD1 was After boiling for 5 min, the samples were subjected to SDS- generated using the XhoI/EcoRI sites and subcloned into PAGE. The gels were stained with Coomassie blue, dried, pcDNA 3.1/myc-His C (Invitrogen). Mutants of GST-D1R- and exposed to X-ray film for autoradiography. CT and myc-his-DNPKD1 (D727A) were created with the QuickChange site-directed mutagenesis kit (Stratagene, Animals La Jolla, CA). All constructs were confirmed by DNA sequencing (BGI, Beijing, China). Male Sprague–Dawley rats (weighing 250–270 g on arrival) were housed in groups of five in a temperature- (23±2 1C) ± Drug and Peptides and humidity- (50 5%) controlled environment. The animals
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Protein Kinase D1 Regulates Hypoxic Metabolism Through HIF-1Α and Glycolytic Enzymes Incancer Cells
    ONCOLOGY REPORTS 40: 1073-1082, 2018 Protein kinase D1 regulates hypoxic metabolism through HIF-1α and glycolytic enzymes incancer cells JIAO CHEN*, BOMIAO CUI*, YAPING FAN*, XIAOYING LI, QIAN LI, YUE DU, YUN FENG and PING ZHANG State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China Received October 7, 2017; Accepted April 3, 2018 DOI: 10.3892/or.2018.6479 Abstract. Protein kinase D1 (PKD1), one of the protein Introduction kinase D (PKD) family members, plays a prominent role in multiple bio-behaviors of cancer cells. Low pH and hypoxia Oral cancer is a major public health issue and a social chal- are unique characteristics of the tumor microenvironment. lenge. Tongue squamous cell carcinoma (TSCC) is the most The aim of this study was to investigate the role and mecha- aggressive type of oral cancer. Environmental factors, genetics nism of PKD1 in regulating metabolism in the human tongue and immune status have been confirmed to be related to the squamous cell carcinoma (TSCC) cell line SCC25 under a tumorigenesis of tongue cancer (1). The tumor microenviron- hypoxic condition, as well as growth and apoptosis. Here, we ment, which is composed of complex components including found that hypoxia not only induced the expression of HIF-1α, stem cells, fibroblasts, immune cells and their secreted factors, but also induced the expression and activation of PKD1. is critical to the initiation, development and maintenance of Moreover, we inhibited the expression of PKD1 by shRNA tumorigenesis (1). As the ‘residence niche’ of cancer cells, the interference, and the growth of SCC25 cells under hypoxia was composition and structure of the tumor microenvironment significantly decreased, as well as the expression of HIF-1α, not only affects the bio-behavior, but also determines the while the percentage of apoptotic SCC25 cells was increased.
    [Show full text]
  • Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-21-2012 12:00 AM Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence Kyle Pitchers The University of Western Ontario Supervisor Lique M. Coolen The University of Western Ontario Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Kyle Pitchers 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Pitchers, Kyle, "Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence" (2012). Electronic Thesis and Dissertation Repository. 592. https://ir.lib.uwo.ca/etd/592 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. NEUROPLASTICITY IN THE MESOLIMBIC SYSTEM INDUCED BY SEXUAL EXPERIENCE AND SUBSEQUENT REWARD ABSTINENCE (Spine Title: Sex, Drugs and Neuroplasticity) (Thesis Format: Integrated Article) By Kyle Kevin Pitchers Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the requirements for degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Kyle K. Pitchers, 2012 THE UNIVERSITY
    [Show full text]
  • A Novel Kinase Inhibitor Establishes a Predominant Role for Protein Kinase D As a Cardiac Class Iia Histone Deacetylase Kinase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 631–637 journal homepage: www.FEBSLetters.org A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase Lauren Monovich a,*, Richard B. Vega a, Erik Meredith a, Karl Miranda a, Chang Rao a, Michael Capparelli a, Douglas D. Lemon b, Dillon Phan b, Keith A. Koch b, Joseph A. Chapo b, David B. Hood b, Timothy A. McKinsey b,* a Novartis Institutes for Biomedical Research, 3333 Walnut Street, Boulder, CO 80301, United States b Gilead Colorado, Inc., 3333 Walnut Street, Boulder, CO 80301, United States article info abstract Article history: Class IIa histone deacetylases (HDACs) repress genes involved in pathological cardiac hypertrophy. Received 13 November 2009 The anti-hypertrophic action of class IIa HDACs is overcome by signals that promote their phosphor- Revised 8 December 2009 ylation-dependent nuclear export. Several kinases have been shown to phosphorylate class IIa Accepted 11 December 2009 HDACs, including calcium/calmodulin-dependent protein kinase (CaMK), protein kinase D (PKD) Available online 14 December 2009 and G protein-coupled receptor kinase (GRK). However, the identity of the kinase(s) responsible Edited by Ivan Sadowski for phosphorylating class IIa HDACs during cardiac hypertrophy has remained controversial. We describe a novel and selective small molecule inhibitor of PKD, bipyridyl PKD inhibitor (BPKDi). BPKDi blocks signal-dependent phosphorylation and nuclear export of class IIa HDACs in cardio- Keywords: Kinase myocytes and concomitantly suppresses hypertrophy of these cells.
    [Show full text]
  • New Persistent Opioid Abuse and the Brain Reward Circuit
    Zhang L, Boysen PG. New Persistent Opioid Abuse and the Brain Reward Circuit. J Anesthesiol & Pain Therapy. 2020;1(1):11-13 Letter to the Editor Open Access New Persistent Opioid Abuse and the Brain Reward Circuit Ly Zhang*, Philip G. Boysen Department of Anesthesiology, University of Mississippi Medical Center, The Mississippi Critical Care Organization, USA Article Info New persistent opioid abuse in peri-operative and peri- procedural patients is reported to be ~6% in two large population- Article Notes 1 Received: December 06, 2019 based studies . In addressing the opioid crisis the CDC has developed Accepted: April 08, 2020 2 *Correspondence: approved opioids are prescribed by licensed professionals . The *Dr. Ly Zhang, Department of Anesthesiology, University of three categories. The first is prescription drugs, when legal and Mississippi Medical Center, The Mississippi Critical Care and fentanyl . Over time CDC data indicates a sharp uptick in opioid Organization, USA; Email: [email protected]. second and third3,4 categories involve illicit drugs, specifically heroin ©2020 Zhang L. This article is distributed under the terms of the prescription drugs5. Understanding the neurobiology of addiction Creative Commons Attribution 4.0 International License. deaths for heroin and fentanyl, but a flat incidence of overdose with and public health issues are integral to the understanding of how adds insight to the problem and treatment. In addition, the social the brain reward circuit is activated in the first place. human primates 50 years ago. Rats taught to push a lever to self – The brain reward circuit was described in rodents, then in non- aspectsadminister of addictive addictive behavior.
    [Show full text]
  • Nicotine and Neurotransmitters
    Module 2 —Legal Doesn’t Mean Harmless Overview Overview Summary This module focuses on how two drugs, nicotine and alcohol, change the functioning of the brain and body. Both drugs are widely used in the community, and for adults, using them is legal. Nonetheless, both alcohol and nicotine can have a strong impact on the functioning of the brain. Each can cause a number of negative effects on the body and brain, ranging from mild symptoms to addiction. The goal of this module is to help students understand that, although nicotine and alcohol are legal for adults, they are not harmless substances. Students will learn about how nicotine and alcohol change or disrupt the process of neurotransmission. Students will explore information on the short- and long- term effects of these two drugs, and also learn why these drugs are illegal for children and teens. Through the media, students are exposed to a great deal of information about alcohol and tobacco, much of which is misleading or scientifically inaccurate. This module will provide information on what researchers have learned about how nicotine and alcohol change the brain, and the resulting implications for safety and health. Learning Objectives At the end of this module: • Students can explain how nicotine disrupts neurotransmission. • Students can explain how alcohol use may harm the brain and the body. • Students understand how alcohol can intensify the effect of other drugs. • Students can define addiction and understand its basis in the brain. • Students draw conclusions about why our society regulates the use of nicotine and alcohol for young people.
    [Show full text]
  • The Effects of Nicotine Administration on Behavior and Markers of Brain Plasticity in a Rodent Model of Psychosis" (2012)
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2012 The ffecE ts of Nicotine Administration on Behavior and Markers of Brain Plasticity in a Rodent Model of Psychosis Marla K. Perna East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Chemical Actions and Uses Commons Recommended Citation Perna, Marla K., "The Effects of Nicotine Administration on Behavior and Markers of Brain Plasticity in a Rodent Model of Psychosis" (2012). Electronic Theses and Dissertations. Paper 1432. https://dc.etsu.edu/etd/1432 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Effects of Nicotine Administration on Behavior and Markers of Brain Plasticity in a Rodent Model of Psychosis ________________________ A dissertation presented to the faculty of the Department of Anatomy and Cell Biology East Tennessee State University In partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Sciences ________________________ by Marla Perna May 2012 ________________________ Russell W. Brown, Chair Ronald H. Baisden Theresa A. Harrison Gregory A. Ordway Brooks B. Pond David S. Roane Keywords: psychosis, adolescence, nicotine, dopamine, synaptic plasticity ABSTRACT The Effects of Nicotine Administration on Behavior and Markers of Brain Plasticity in a Rodent Model of Psychosis by Marla Perna Schizophrenia affects about 1% of the population.
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Redalyc.Neurobiological Alterations in Alcohol Addiction: a Review
    Adicciones ISSN: 0214-4840 [email protected] Sociedad Científica Española de Estudios sobre el Alcohol, el Alcoholismo y las otras Toxicomanías España Erdozain, Amaia M.; Callado, Luis F. Neurobiological alterations in alcohol addiction: a review Adicciones, vol. 26, núm. 4, octubre-diciembre, 2014, pp. 360-370 Sociedad Científica Española de Estudios sobre el Alcohol, el Alcoholismo y las otras Toxicomanías Palma de Mallorca, España Available in: http://www.redalyc.org/articulo.oa?id=289132934009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative revisión adicciones vol. 26, nº 3 · 2014 Neurobiological alterations in alcohol addiction: a review Alteraciones neurobiológicas en el alcoholismo: revisión Amaia M. Erdozain*,*** and Luis F. Callado*,** *Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. **Biocruces Health Research Institute, Bizkaia, Spain. ***Neuroscience Paris Seine, Université Pierre et Marie Curie, Paris, France Resumen Abstract Todavía se desconoce el mecanismo exacto mediante el cual el etanol The exact mechanism by which ethanol exerts its effects on the brain produce sus efectos en el cerebro. Sin embargo, hoy en día se sabe is still unknown. However, nowadays it is well known that ethanol que el etanol interactúa con proteínas específicas de la membrana interacts with specific neuronal membrane proteins involved in neuronal, implicadas en la transmisión de señales, produciendo así signal transmission, resulting in changes in neural activity.
    [Show full text]
  • New Directions in Behavioral Activation
    Clinical Psychology Review 79 (2020) 101860 Contents lists available at ScienceDirect Clinical Psychology Review journal homepage: www.elsevier.com/locate/clinpsychrev Review New directions in behavioral activation: Using findings from basic science T and translational neuroscience to inform the exploration of potential mechanisms of change Courtney N. Forbes Department of Psychology, University of Toledo, Mail Stop 948, 2801 West Bancroft Street, Toledo, OH 43606, USA HIGHLIGHTS • Understanding mechanisms of change can facilitate improvements in BA treatments. • BA treatments may work by targeting (low) reward responsiveness directly. • Basic science findings can inform hypotheses about potential mechanisms of change. ARTICLE INFO ABSTRACT Keywords: Interest in behavioral activation treatments for depression has increased over the past two decades. Behavioral Behavioral activation activation treatments have been shown to be effective in treating depression across a variety of populations and Reward responsiveness settings. However, little is known about the mechanisms of change that may bring about symptom improvement Depression in behavioral activation treatments. Recent developments in the theoretical and empirical literature on beha- Mechanisms of change vioral activation treatments have coincided with advances in basic science and translational neuroscience re- Translational neuroscience garding the mechanisms underlying individual differences in responsiveness to reward. Attenuated reward re- sponsiveness has been associated with depression and related clinical outcomes at the self-report, behavioral, and neural levels of analysis. Given that behavioral activation treatments are focused on increasing individuals' contact and engagement with sustainable sources of reward in their environment, it is plausible that behavioral activation treatments bring about improvements in depression symptoms by targeting (low) reward respon- siveness directly.
    [Show full text]
  • The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats
    Neuropsychopharmacology (2017) 42, 2292–2300 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats 1 1 ,1 Claire J Foldi , Laura K Milton and Brian J Oldfield* 1 Department of Physiology, Monash University, Clayton, VIC, Australia Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged.
    [Show full text]
  • ID 584 Model of Reward System Toward the Performance of Public Sector
    Proceedings of the International Conference on Industrial Engineering and Operations Management Pilsen, Czech Republic, July 23-26, 2019 Model of reward system toward the performance of public sector organizations Dewi Prastiwi, Pujiono and Aisyaturrahmi Universitas Negeri Surabaya, Department of Accounting, Surabaya, Jawa Timur 60231, Indonesia [email protected] Abdul Talib Bon Department of Production and Operations, University Tun Hussein Onn Malaysia, Malaysia [email protected] Abstract The service quality of public sector organizations in Indonesia is currently considered to be less satisfactory than the private sector. One reason for the low performance of public sector employees is because the reward and punishment system is not applied firmly and consistently. The reward system is very important in both the private and public sectors, because rewards have a central role to keep employees motivated and tied to work. The Social Exchange Theory states that when a person is satisfied with the award given by the organization, they will reciprocate by developing a positive attitude towards the organization such as a higher level of commitment. This study aims to explore the effect of reward systems on the commitment and performance of public sector employees using quantitative methods. Analysis of research using primary data collected through questionnaires using survey methods and hypothesis testing using PLS software. The results showed that :extrinsic rewards negatively affected affective, normative, and sustained commitment; intrinsic and social rewards have a positive effect on affective, normative and sustainable commitment; Affective commitment has a positive effect on organizational performance, while normative and sustainable commitments negatively affect organizational performance Keywords service quality, public sector, private sector, reward system, sustainable 1.
    [Show full text]