Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RNA-Binding Protein Hnrnpll Regulates Mrna Splicing and Stability During B-Cell to Plasma-Cell Differentiation
RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation Xing Changa,b, Bin Lic, and Anjana Raoa,b,d,e,1 Divisions of aSignaling and Gene Expression and cVaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; bSanford Consortium for Regenerative Medicine, La Jolla, CA 92037; and dDepartment of Pharmacology and eMoores Cancer Center, University of California at San Diego, La Jolla, CA 92093 Contributed by Anjana Rao, December 2, 2014 (sent for review July 20, 2014) Posttranscriptional regulation is a major mechanism to rewire the RBP-binding sites, thus validating the specificity of RBP binding transcriptomes during differentiation. Heterogeneous nuclear to coprecipitating RNAs and mapping RBP-binding sites on the RNA-binding protein LL (hnRNPLL) is specifically induced in terminally validated RNAs at close to single-nucleotide resolution (8). differentiated lymphocytes, including effector T cells and plasma Heterogeneous nuclear RNA-binding proteins (hnRNPs) is cells. To study the molecular functions of hnRNPLL at a genome- the term applied to a collection of unrelated nuclear RBPs. wide level, we identified hnRNPLL RNA targets and binding sites in hnRNPLL was identified through a targeted lentiviral shRNA plasma cells through integrated Photoactivatable-Ribonucleoside- screen for regulators of CD45RA to CD45RO switching during Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and memory T-cell development (9) and independently through RNA sequencing. hnRNPLL preferentially recognizes CA dinucleo- two separate screens performed by different groups for exclusion tide-containing sequences in introns and 3′ untranslated regions of CD45 exon 4 in a minigene context (10) and for altered CD44 (UTRs), promotes exon inclusion or exclusion in a context-dependent and CD45R expression on T cells in N-ethyl-N-nitrosourea manner, and stabilizes mRNA when associated with 3′ UTRs. -
TGF-Β1 Signaling Targets Metastasis-Associated Protein 1, a New Effector in Epithelial Cells
Oncogene (2011) 30, 2230–2241 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE TGF-b1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells SB Pakala1, K Singh1,3, SDN Reddy1, K Ohshiro1, D-Q Li1, L Mishra2 and R Kumar1 1Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, DC, USA and 2Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA In spite of a large number of transforming growth factor b1 gene chromatin in response to upstream signals. The (TGF-b1)-regulated genes, the nature of its targets with TGF-b1-signaling is largely mediated by Smad proteins roles in transformation continues to be poorly understood. (Massague et al., 2005) where Smad2 and Smad3 are Here, we discovered that TGF-b1 stimulates transcription phosphorylated by TGF-b1-receptors and associate with of metastasis-associated protein 1 (MTA1), a dual master the common mediator Smad4, which translocates to the coregulator, in epithelial cells, and that MTA1 status is a nucleus to participate in the expression of TGF-b1-target determinant of TGF-b1-induced epithelial-to-mesenchymal genes (Deckers et al., 2006). Previous studies have shown transition (EMT) phenotypes. In addition, we found that that CUTL1, also known as CDP (CCAAT displacement MTA1/polymerase II/activator protein-1 (AP-1) co-activator protein), a target of TGF-b1, is needed for its short-term complex interacts with the FosB-gene chromatin and stimu- effects of TGF-b1 on cell motility involving Smad4- lates its transcription, and FosB in turn, utilizes FosB/histone dependent pathway (Michl et al.,2005). -
Epigenetics of the Synapse in Neurodegeneration
Current Neurology and Neuroscience Reports (2019) 19:72 https://doi.org/10.1007/s11910-019-0995-y GENETICS (V. BONIFATI, SECTION EDITOR) Epigenetics of the Synapse in Neurodegeneration Mary Xylaki1 & Benedict Atzler1 & Tiago Fleming Outeiro1,2,3 # The Author(s) 2019 Abstract Purpose of Review In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. Recent Findings Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Summary Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration. Keywords Synapse . Neurodegenerative diseases . DNA methylation . Histone modifications . Noncoding RNAs . Neuroepigenetics Abbreviations CpG Cytosine-phosphate-guanine 3xTg-AD Triple-transgenic AD CpH Non-CpG 5xFAD Five familial -
Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution
cancers Review Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution Giusi Russo 1, Alfonso Tramontano 2, Ilaria Iodice 1, Lorenzo Chiariotti 1 and Antonio Pezone 1,* 1 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy; [email protected] (G.R.); [email protected] (I.I.); [email protected] (L.C.) 2 Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-081-746-3614 Simple Summary: Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract: Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are Citation: Russo, G.; Tramontano, A.; randomly generated, but strongly selected by deterministic events. -
The International Human Epigenome Consortium (IHEC): a Blueprint for Scientific Collaboration and Discovery
The International Human Epigenome Consortium (IHEC): A Blueprint for Scientific Collaboration and Discovery Hendrik G. Stunnenberg1#, Martin Hirst2,3,# 1Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, The Netherlands 2Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4. 3Canada’s Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, Canada V5Z 4S6 #Corresponding authors [email protected] [email protected] Abstract The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalogue of high-resolution reference epigenomes of major primary human cell types. The studies now presented (cell.com/XXXXXXX) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic data sets to gain insights in the epigenetic control of cell states relevant for human health and disease. One of the great mysteries in developmental biology is how the same genome can be read by cellular machinery to generate the plethora of different cell types required for eukaryotic life. As appreciation grew for the central roles of transcriptional and epigenetic mechanisms in specification of cellular fates and functions, researchers around the world encouraged scientific funding agencies to develop an organized and standardized effort to exploit epigenomic assays to shed additional light on this process (Beck, Olek et al. 1999, Jones and Martienssen 2005, American Association for Cancer Research Human Epigenome Task and European Union 2008). In March 2009, leading scientists and international health research funding agency representatives were invited to a meeting in Bethesda (MD, USA) to gauge the level of interest in an international epigenomics project and to identify potential areas of focus. -
Neuroepigenetics: Introduction to the Special Issue on Epigenetics in Neurodevelopment and Neurological Diseases
Experimental Neurology 268 (2015) 1–2 Contents lists available at ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr Editorial Neuroepigenetics: Introduction to the special issue on epigenetics in neurodevelopment and neurological diseases Gene expression profile represents the molecular state of a cell at a The structural unit of the chromatin is nucleosome, which is com- given time and is dynamically regulated and precisely controlled in re- prised of DNA chains wrapping around histone proteins. Nucleosomes sponse to external stimuli. While the DNA sequences are the ultimate can be either loosely or densely packed, which is associated with active templates for gene transcription, epigenetic features of the genome, in- or suppressed gene transcription, respectively. The chemical modifica- cluding modifications of histones, methylation of cytosine nucleotides tions of the histone tail, most commonly acetylation, methylation and of the genomic DNA, 3-dimensional interaction of genomic regions, phosphorylation, are one of the determinants of the structural status and the expression of various forms of non-coding RNAs, regulate the of the chromatin. Histone acetylation is in general correlates with accessibility and processability of the genomic loci and add another loose chromatin and active gene expression. On the other hand, layer of regulation of gene expression beyond the heritable DNA se- Histone-3 lysine-4 trimethylation (H3K4Me3) plays both positive and quences. For decades, some epigenetic properties of the genome, such negative roles in regulating gene expression, depending on the combi- as DNA methylation, have been considered as stable and inheritable nation of other histone modifications. The article by Shen and col- marks. -
Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-21-2012 12:00 AM Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence Kyle Pitchers The University of Western Ontario Supervisor Lique M. Coolen The University of Western Ontario Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Kyle Pitchers 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Pitchers, Kyle, "Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence" (2012). Electronic Thesis and Dissertation Repository. 592. https://ir.lib.uwo.ca/etd/592 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. NEUROPLASTICITY IN THE MESOLIMBIC SYSTEM INDUCED BY SEXUAL EXPERIENCE AND SUBSEQUENT REWARD ABSTINENCE (Spine Title: Sex, Drugs and Neuroplasticity) (Thesis Format: Integrated Article) By Kyle Kevin Pitchers Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the requirements for degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Kyle K. Pitchers, 2012 THE UNIVERSITY -
New Persistent Opioid Abuse and the Brain Reward Circuit
Zhang L, Boysen PG. New Persistent Opioid Abuse and the Brain Reward Circuit. J Anesthesiol & Pain Therapy. 2020;1(1):11-13 Letter to the Editor Open Access New Persistent Opioid Abuse and the Brain Reward Circuit Ly Zhang*, Philip G. Boysen Department of Anesthesiology, University of Mississippi Medical Center, The Mississippi Critical Care Organization, USA Article Info New persistent opioid abuse in peri-operative and peri- procedural patients is reported to be ~6% in two large population- Article Notes 1 Received: December 06, 2019 based studies . In addressing the opioid crisis the CDC has developed Accepted: April 08, 2020 2 *Correspondence: approved opioids are prescribed by licensed professionals . The *Dr. Ly Zhang, Department of Anesthesiology, University of three categories. The first is prescription drugs, when legal and Mississippi Medical Center, The Mississippi Critical Care and fentanyl . Over time CDC data indicates a sharp uptick in opioid Organization, USA; Email: [email protected]. second and third3,4 categories involve illicit drugs, specifically heroin ©2020 Zhang L. This article is distributed under the terms of the prescription drugs5. Understanding the neurobiology of addiction Creative Commons Attribution 4.0 International License. deaths for heroin and fentanyl, but a flat incidence of overdose with and public health issues are integral to the understanding of how adds insight to the problem and treatment. In addition, the social the brain reward circuit is activated in the first place. human primates 50 years ago. Rats taught to push a lever to self – The brain reward circuit was described in rodents, then in non- aspectsadminister of addictive addictive behavior. -
CAMB713: Neuroepigenetics
CAMB713: Neuroepigenetics TIME: Thursdays 1-3pm 8/29 – 12/12 (organizational meeting 8/29, no class on 9/5 and 11/28) LOCATION: BRB 1413 COURSE DIRECTORS: Zhaolan (Joe) Zhou 215.746.5025 [email protected] Elizabeth Heller 215.573.7038 [email protected] Hao Wu 215.573.9360 [email protected] GOALS: This is a course intended to bring students up to date concerning our understanding of Neural Epigenetics. It is based on assigned topics and readings covering a variety of experimental systems and concepts in the field of Neuroepigenetics, formal presentations by individual students, critical evaluation of primary data, and in-depth discussion of potential issues and future directions, with goals to: 1) Review basic concepts of epigenetics in the context of neuroscience 2) Learn to critically evaluate a topic (not a single paper) and rigor of prior research 3) Improve experimental design and enhance rigor and reproducibility 4) Catch up with the most recent development in neuroepigenetics 5) Develop professional presentation skills - be a story teller FORMAT: Each week will focus on a specific topic of Neuroepigenetics via a “seminar” style presentation by a class member with the following expectations: Consultation with preceptor prior to presentation Introduction (~20 min): Context of topic in the field Historic perspectives of the topic Current understandings Primary data (~40 min): Questions of interest Design of experiments Interpretation of data Discussion (~20 min): Issues/challenges Proposed future -
Nicotine and Neurotransmitters
Module 2 —Legal Doesn’t Mean Harmless Overview Overview Summary This module focuses on how two drugs, nicotine and alcohol, change the functioning of the brain and body. Both drugs are widely used in the community, and for adults, using them is legal. Nonetheless, both alcohol and nicotine can have a strong impact on the functioning of the brain. Each can cause a number of negative effects on the body and brain, ranging from mild symptoms to addiction. The goal of this module is to help students understand that, although nicotine and alcohol are legal for adults, they are not harmless substances. Students will learn about how nicotine and alcohol change or disrupt the process of neurotransmission. Students will explore information on the short- and long- term effects of these two drugs, and also learn why these drugs are illegal for children and teens. Through the media, students are exposed to a great deal of information about alcohol and tobacco, much of which is misleading or scientifically inaccurate. This module will provide information on what researchers have learned about how nicotine and alcohol change the brain, and the resulting implications for safety and health. Learning Objectives At the end of this module: • Students can explain how nicotine disrupts neurotransmission. • Students can explain how alcohol use may harm the brain and the body. • Students understand how alcohol can intensify the effect of other drugs. • Students can define addiction and understand its basis in the brain. • Students draw conclusions about why our society regulates the use of nicotine and alcohol for young people. -
Epigenome-Wide Association Study (EWAS) on Lipids: the Rotterdam Study Kim V
Braun et al. Clinical Epigenetics (2017) 9:15 DOI 10.1186/s13148-016-0304-4 RESEARCH Open Access Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study Kim V. E. Braun1, Klodian Dhana1, Paul S. de Vries1,2, Trudy Voortman1, Joyce B. J. van Meurs3,4, Andre G. Uitterlinden1,3,4, BIOS consortium, Albert Hofman1,5, Frank B. Hu5,6, Oscar H. Franco1 and Abbas Dehghan1* Abstract Background: DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. Results: Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1,andSREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. -
Cross-Family Dimerization of Transcription Factors Fos/Jun
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 3720-3724, May 9, 1991 Biochemistry Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity (gene regulation/oncogenes/leucine zipper/protein dimerization/transcription) TSONWIN HAI*t AND ToM CURRANt of Medical Biochemistry and Ohio State Biotechnology Center, Ohio State University, 1060 Carmack Road, Columbus, OH 43210; and tDepartment*Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110 Communicated by Herbert Weissbach, January 31, 1991 ABSTRACT The Fos/Jun and ATF/CREB families of Table 1. Mammalian Fos/Jun and ATF/CREB families transcription factors function in coupling extracellular signals Family Subfamily Gene(s) to alterations in expression of specific target genes. Like many eukaryotic transcription factors, these proteins bind to DNA as Fos/Jun Fos fos, fra-), fra-2, fosB dimers. Dimerization is mediated by a structure known as the Jun c-jun, junB, junD "leucine-zipper" motif. Although Fos/Jun and ATF/CREB ATF/CREB CREB CREB, ATF-I were previously thought to interact preferentially with differ- CRE-BP1 CRE-BPI, ATF-a ent DNA regulatory elements (the AP-1/TRE and ATF/CRE ATF-3 ATF-3* sites, respectively), we rind that members of these two families ATF-4 ATF4* form selective cross-family heterodimers. The resulting het- Alternative names for CRE-BPI are ATF-2 and HB16. ACREB is erodimers display distinguishable DNA binding speclfcities a spliced variant ofCREB, ATF-aA is a spliced variant ofATF-a, and from each other and from their parental homodimers.