Cyclic Adenosine Monophosphate : a Study of Four- and Five-Coordinated Phosphorus Compounds, Modelling the Activated State of Camp

Total Page:16

File Type:pdf, Size:1020Kb

Cyclic Adenosine Monophosphate : a Study of Four- and Five-Coordinated Phosphorus Compounds, Modelling the Activated State of Camp On the mechanism of action of 3',5'-cyclic adenosine monophosphate : a study of four- and five-coordinated phosphorus compounds, modelling the activated state of cAMP Citation for published version (APA): Broeders, N. L. H. L. (1993). On the mechanism of action of 3',5'-cyclic adenosine monophosphate : a study of four- and five-coordinated phosphorus compounds, modelling the activated state of cAMP. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR398989 DOI: 10.6100/IR398989 Document status and date: Published: 01/01/1993 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 01. Oct. 2021 ON THE MECHANISM OF ACTION OF 3' ,5'-CYCLIC ADENOSINE MONOPHOSPHATE A Study of Foor- and Five-coordinated Phosphorus Compounds, Modelling the Activated State of cAMP PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof. dr. J.H. van Lint, voor een commissie aangewezen door het College van Dek:anen in het openbaar te verdedigen op woensdag 30 juni 1993 om 14.00 uur door NICOLAAS LAMBERTUS HENDRINUS LAURENTJUS BROEDERS geboren te VVagenberg do <ol. w ol ll<ll h · .·,, ·ol diU·Ih<IU o•l 'I ru·lllnuod Dit proefschrift is goedgekeurd door de promotoren: prof. dr. E. W. Mcijer en prof. dr. E.M. Meîjer Copromotor: dr. ir. L.ll. Kook CIP-GEGF.VENS KONINKLIJKE Bl8LIOTHEEK, DEN HAAG Broeders, Nicolaas Lambertus Hendrinus Laurentius On the rnecl1<1nism of action of ~',5'-cyclic adenosine monophosphate: a study of four- and five-coordinated phosphorus cornpounds, modelling thc activaled state of cAMP I Nicolaas Lambertus Hendrinus Lu1rcntius Broeders. -Eindhoven: Eindhoven University of Technology Proefsçhrift Eindhoven. - Met lit. opg. - Met s<•menvattîng in het Nederlands. ISBN 90-386-0222-7 Trefw.: fosfor. Ter :naeedäclitenis aan mijn Ouders Yoor .Jl.gnès Contents Contents 1 General lotroductlon 9 1.1 Inttoduction 9 l. 2 cAMP Analogues 14 l. 3 Role of Pbosphorus in !he Mechanism of Action of cAMP 15 1.4 A Closer Look at Five-roordinated Phosphorus 17 1.5 Aim and Outline of !he Thesis 21 References and Notes 23 2 A 400- and 600-MHz 1H NMR Study on tbe Orieotation and Confonnation of l.be 3' ,5'-Dioxaphosphorinane Ring in Nucleoside 3' ,S'-Cydic pV-TBP Systems 27 2.1 1nttoduction 28 2.2 Results and Discussion 30 2.2.1 Prepatation of Compounds 2-9 30 2.2.2 Conformational Analysis 32 2.2.2.1 Location of !he 3',5'-Dioxaphosphorinane Ring in pV.mp 2 and 3 32 2.2.2.2 Conformation of !he 2' -Deoxyribose Ring 37 2.2.2.3 Conformation of the 3' ,5' -Dioxaphosphorinane Ring in pV_ TBP 2 and 3 39 2.3 Conclusions 44 2.4 Experimental 45 2.4.1 Material and Methods 45 2.4.2 Synthesis 45 References and Notes 53 3 A ' 1P NMR Stereocbemical and Kinetic Study of the Alkaline Hydrolysis ot cis-Nucleoside 3' ,5'-Cyclic Aryl [180]Mon<>­ phosphates and Uniabelled Analogues 57 3. I Introduetion 58 3.2 Results and Discussion 60 3.2.1 Synthesis 60 3.2.2 Hydralysis of 3a-c 61 Conlenis 3.2.3 Hydrolysis of 180-Labelled 3',5'-cyelic Phosphate Triesters 4a-<: 63 3.2.3.1 Stereochemical Analysi> of lhe 3' ,5' -Cyclie Methyl Phosphate Triesters 67 3.2.3.2 Stereochemical Analysis of lhe Acyelîc 3'· and 5'-Methyl Acyl Phosphate Triesters 69 3.3 Interprelation and Conclusions 73 3.4 Experimental 80 3.4 .I Matenals and Chmmatography 80 3.4.2 NMR Measurements 81 3.4.3 UV/Visible Spectroscopy 81 · 3.4.4 Synlhesis 81 3.4.5 Hydrolysis 87 3.4.5.1 General Procedure for lhe Hydrolysis of 3a, 3b and 3e 87 3.4.5.2 Hydralysis of cis-Thymidine 3' ,5'-Cyclic Phenyl [ 180]Monophosphate (4a) and Melhylation of lhe Produets 88 3.4.5.3 Hydrolysis of cis-Thymidine 3',5'-Cyclic p-Nitrophenyl [ 180]Monophosphate (4b) and Methylation of lhe ProduelS 89 3.4.5.4 Hydrolysis of 2'-0-Methyl-cis-Adenosine 3' ,5'-Cyclic Phenyl e•o]Monophosph,ate (4c) and Methylation of lhe ProduelS 90 Appendix 91 References and Notes 93 4 2'-0-Metbyl-Cis-Adenosine 3',$'-Cyclic Metbyl Monopbosphate, a New Model System for . cAMP. Aspects of Structure and Reactivity 97 4, I Introduetion 98 4.2 Results and Discussion 99 4.2.1 Synlhesis 99 4.2.2 Crystal Struclure 100 4.2.2.1 Conformation of lhe Ribose Ring 100 4.2.2.2 Conformation of lbe 3' ,5'-Dioxaphosphorinane Ring 106 4.2.2.3 Geometry and Orientation of lhe Base 109 4.2.2.4 Molecular Paclting and Hydragen Bonding 109 4.2.3 Conformation in Solution lil Conlenis 4.2.3.1 Conformation of the Ribose Ring 111 4.2.3.2 Conformation of the 3' ,5'-Dioxaphosphorinane Ring 112 4.2.4 Hydrolysis of Cis-4 113 4.3 Conclusions 114 4.4 Experimental 117 4.4.1 Matcrials and Chromatography 117 4.4.2 NMR Spectroscopy 118 4.4.3 Synthesis 118 4.4.4 Hydrolysis of Cis-4 ll9 4.4.5 Crystal1ographic Measurements and Structure Resolution 119 References and Notes 121 Summary 125 Samenvatting 128 Curri<ulum Vilae 131 1 General Introduetion 1.1 Introduetion The study of pbosphorus compounds started in 1669, as Hennig Brand, a German alchemist from Hamburg, !ried 10 malre gold out of putrefied urine. Brand discovered a substance that is known as white phosphorus: a white, crystalline solid tllat glows in tlle dark and ignites sponllll1eously in air just above room temperature. Later on, white phosphorus attracted considerable attention because of its utility in warfare. White phosphorus bums rapidly in air 10 form phosphoric oxide (P40 10). In the atmosphere, P40 10 appoars as a dense white smoke, and it was discovered during World War I that the obscuring power of this smoke per kg of phosphorus was greater than of any smoke-generating chemieal then known. The number of applications of phosphorus compounds has increased enormously since the days of World War I. For example, the dîscovery of Schrader and others that some organîc phosphates display marked toxic and insecticidal proporties, has created a whole new industry. 1 Today, we encounter phosphorus compounds al most anywhere in our everyday life. A few examples may help to illustrate Ibis. Phosphates occur in oor cleaning agents and detergents, phosphates are used in water treatment, and phosphates are abundant in our food (for exarnple, a cola drink is actually a llavoured, carhonated, sweetened, diluted solution of phosphoric acid). Other more exotic phosphorus compounds occur in fertilizers, pharmaceutieals, and as "llame retardants" in • 9 10 General Introductloo polymerie materials. This lhesis deals wilh aspecl.s of ,lhe role of phosphorus compounds in lhe functioning of living cells, A living cell functions lhrough lhe action of many phosphorus containing compounds: lhe biophosphates, Tbe most important memhers of this class are DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), bolh carriers of lhe genetic code. In DNA and RNA, phosphate groups are found in lhe backbene of lhe well-known spiral-staircase structure. Tbe essential building blocks, called lhe nucleotides, each consist of a nitrogen-containing base, a live-carbon sugar (for DNA, deoxyribose) and phosphoric acid. Four different nitrogen­ containing bases are present in a DNA molecule: lhe two purines adenine (A) and guanine (G), and lhe two pyrimidines thymine (11 and cytosine (C). In lhe double helix, A is coupled to T via two hydrogen bonds and G is coupled to C via lhree hydrogen bonds. Tbe phosphate groups, which are located on lhe periphery of lhe double helix, are of essential importance in DNA-enzyme interactions. Besides, lhe phosphates play a key role in salt-induced conformational changes of DNA, such as: a righlhanded B-DNA helix changing towards a lefthanded Z.DNA helix occuring in d(CG· · ·CG)2 duplexes. Other essential biophosphates are ATP (adenosine triphosphate), which serves as an energy carrier, and 3' ,5' ..:yclic adenosine monophosphate (cAMP) which mediatos lhe action of many honnones and reguiatos important activities in almost every living cell.
Recommended publications
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • List of Abbreviations
    List of Abbreviations 1,3BPGA 1,3-Bisphospho-D-glycerate 10-formyl THF 10-Formyltetrahydrofolate 2PG 2-phospho-D-glycerate 3PG 3-phospho-D-glycerate 3PPyr 3-phosphonooxypyruvate 3PSer 3-phosphoserine 6PDG 6-phospho-D-gluconate 6Pgl glucono-1,5-lactone-6-phosphate AcAcACP acetoacetyl-ACP AcAcCoA acetoacetyl-CoA AcACP acetyl-ACP AcCoA acetyl-CoA ACP acyl carrier protein ADP adenosine 5'-diphosphate AKG alpha-ketoglutarate Ala alanine AMP adenosine 5'-monophosphate Arg arginine ArgSuc argininosuccinate Asn asparagine Asp aspartate ATP adenosine 5'-triphosphate CDP cytidine 5'-diphosphate Chol cholesterol Ci citrulline Cit citrate CMP cytidine 5'-monophosphate CO2 carbon dioxide CoA coenzyme A CP carbamoyl-phosphate CTP cytidine 5'-triphosphate Cytc-ox ferricytochrome c Cytc-red ferrocytochrome c dADP 2'-deoxyadenosine 5'-diphosphate dAMP 2'-deoxyadenosine 5'-monophosphate dCDP 2'-deoxycytosine 5'-diphosphate dCMP 2'-deoxycytosine 5'-monophosphate dGDP 2'-deoxyguanosine 5'-diphosphate dGMP 2'-deoxyguanosine 5'-monophosphate DHAP dihydroxyacetone phosphate DHF 7,8-Dihydrofolate dTMP 2'-Deoxythymidine-5'-monophosphate dUDP 2'-Deoxyuridine-5'-diphosphate dUMP 2'-Deoxyuridine-5'-monophosphate Ery4P erythrose-4-phosphate F16BP fructose 1,6-bisphosphate F6P fructose 6-phosphate FAD flavin adenine dinucleotide FADH2 flavin adenine dinucleotide reduced for formate fPP farnesyl diphosphate Fum fumarate G6P glucose 6-phosphate GA guanidinoacetate GA3P glyceraldehyde 3-phosphate GDP guanosine 5'-diphosphate Glc glucose Gln glutamine Glu glutamate GluSA
    [Show full text]
  • Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymer
    Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymerase A (DNA Polymerase I) from the Yeast Saccharomyces cere visiae Hans Eckstein Institut für Physiologische Chemie der Universität, Martinistr. 52-UKE, D-2000 Hamburg 20 Z. Naturforsch. 36 c, 813-819 (1981); received April 16/July 2, 1981 Dedicated to Professor Dr. Joachim Kühnauon the Occasion of His 80th Birthday cGMP, DNA Polymerase Activity, DNA Polymerase A, DNA Polymerase I, Baker’s Yeast DNA polymerase activity from extracts of growing yeast cells is inhibited by cGMP. Experiments with partially purified yeast DNA polymerases show, that cGMP inhibits DNA polymerase A (DNA polymerase I from Chang), which is the main component of the soluble DNA polymerase activity in yeast extracts, by competing for the enzyme with the primer- template DNA. Since the enzyme is not only inhibited by 3',5'-cGMP, but also by 3',5'-cAMP, the 3': 5'-phosphodiester seems to be crucial for the competition between cGMP and primer. This would be inconsistent with the concept of a 3'-OH primer binding site in the enzyme. The existence of such a site in the yeast DNA polymerase A is indicated from studies with various purine nucleoside monophosphates. When various DNA polymerases are compared, inhibition by cGMP seems to be restricted to those enzymes, which are involved in DNA replication. DNA polymerases with an associated nuclease activity are not inhibited, DNA polymerase B from yeast is even activated by cGMP. Though some relations between the cGMP effect and the presumed function of the enzymes in the living cell are apparent, the biological meaning of the observations in general remains open.
    [Show full text]
  • Triphosphate Accumulation, DNA Damage, and Growth Inhibition Following Exposure to CB3717 and Dipyridamole Nicola J
    (CANCER RESEARCH 51. 2346-2352, May I. 1991) Mechanism of Cell Death following Thymidylate Synthase Inhibition: 2'-Deoxyuridine-5'-triphosphate Accumulation, DNA Damage, and Growth Inhibition following Exposure to CB3717 and Dipyridamole Nicola J. Curtin,1 Adrian L. Harris, and G. Wynne Aherne Cancer Research L'nil, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne [N. J. C.J; Imperial Cancer Research Fund Clinical Oncology Unit, Churchill Hospital, Headington, Oxon ¡A.L. H.]; Department of Biochemistry, University of Surrey, Guildford, Surrey [G. W. A.], England ABSTRACT but one hypothesis, based on the study of bacterial mutants (3- The thymidylate synthasc inhibitor /V'°-propargyl-5,8-dideazafolic 5), is that TS inhibition leads not only to a reduction in dTTP levels but also, as dUMP accumulates behind the block, to the acid (CB3717) inhibits the growth of human lung carcinoma A549 cells. formation of dUTP. The levels of dUTP eventually overwhelm The cytotoxicity of CB3717 is potentiated by the nucleoside transport inhibitor dipyridamole (DP), which not only inhibits the uptake and dUTPase (the enzyme which breaks down dUTP to dUMP) therefore salvage of thymidine but also inhibits the efflux of deoxyuridine, and the levels of dUTP increase. DNA polymerase can utilize thereby enhancing the intracellular accumulation of deoxyuridine nucleo- dUTP and dTTP with equal efficiency (6), such that uracil is tides. Measurement of intracellular deoxyuridine triphosphate (dUTP) misincorporated into DNA. Uracil in DNA is excised rapidly pools, by sensitive radioimmunoassay, demonstrated a large increase in by uracil glycosylase, leaving an apyrimidinic site. During repair response to CB3717, in a dose- and time-related manner, and this of apyrimidinic sites, in the presence of unbalanced dUTP/ accumulation was enhanced by coincubation with DP.
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Cancer Science Standard Abbreviations List
    Cancer Science Standard Abbreviations List Common abbreviations, acronyms and short names are listed below. These shortened forms can be used without definition in articles published in Cancer Science. The same form is used in the plural. 7-AAD 7-amino-actinomycin D (stain) ES cell embryonic stem cell Ab antibody EST expressed sequence tag ADP adenosine 5′-diphosphate FACS fluorescence-activated cell sorter dADP 2′-deoxyadenosine 5′-diphosphate FBS fetal bovine serum AIDS acquired immunodeficiency syndrome FCS fetal calf serum Akt protein kinase B FDA Food and Drug Administration AML acute myelogenous leukemia FISH fluorescence in situ hybridization AMP adenosine 5′-monophosphate FITC fluorescein isothiocyanate dAMP 2′-deoxyadenosine 5′-monophosphate FPLC fast protein liquid chromatography ANOVA analysis of variance FRET fluorescence resonance energy transfer ATCC American Type Culture Collection GAPDH glyceraldehyde-3-phosphate dehydrogenase ATP adenosine 5′-triphosphate GDP guanosine 5′-diphosphate dATP 2′-deoxyadenosine 5′-triphosphate dGDP 2′-deoxyguanosine 5′-diphosphate beta-Gal, β-Gal beta-galactosidase GFP green fluorescent protein bp base pair(s) GMP guanosine 5′-monophosphate BrdU 5-bromodeoxyuridine dGMP 2′-deoxyguanosine 5′-monophosphate BSA bovine serum albumin GST glutathione S-transferase CCK-8 Cell Counting Kit-8 (tradename) GTP guanosine 5′-triphosphate CDP cytidine 5′-diphosphate dGTP 2′-deoxyguanosine 5′-triphosphate cCDP 2′-deoxycytidine 5′-diphosphate HA hemagglutinin CHAPS 3-[(3-cholamidopropyl)dimethylamino]-1-
    [Show full text]
  • Chem 109 C Bioorganic Compounds
    Chem 109 C Bioorganic Compounds Fall 2019 HFH1104 Armen Zakarian Office: Chemistry Bldn 2217 http://labs.chem.ucsb.edu/~zakariangroup/courses.html CLAS Instructor: Dhillon Bhavan [email protected] Midterm 3 stats Average 49.1 St Dev 14.1 Max 87.5 Min 15 test are available outside room 2135 (Chemistry, 2nd floor) in a box, sorted in alphabetical order, by color Final Course Grading Each test will be curved individually to 75% average Lowest midterm will be dropped Scores from 2 best M and the Final will be added Grades will be assigned according to the syllabus 22. Draw all reactions required to convert hexanoic acid to 3 molecules of acetyl CoA through 11 pt the β-oxidation cycles. Name all necessary coenzymes and enzymes. How many molecules of ATP and CO2 will be produced from hexanoic acid after its entire metabolism through all 4 stages ? O O hexanoic acid (hexanoate) Overview OVERVIEW o structures of DNA vs. RNA - ribose o structures of bases: Adenine, Uracil/Thymine, Guanine, Cytosine. “Enol forms” o hydrogen bonding between A-T(U) and G-C. H-donors/acceptors o Base complementarity o RNA strand cleavage assisted by the 2’-OH group in the ribose unit (cyclic PDE) o Deamination: RNA genetic instability o DNA replication o RNA synthesis: transcription. Template strand (read 3’ to 5’). Sense strand and the RNA primary structure (T −> U). o Protein synthesis: translation. mRNA determines the amino acid sequence. tRNAs are amino acid carriers. rRNA - part of ribosomes o no section 26.12, 26.13 DNA, RNA, etc.
    [Show full text]
  • Modeling of the Hydration Shell of Uracil and Thymine
    Int. J. Mol. Sci. 2000, 1, 17-27 International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.org/ijms/ Modeling of the Hydration Shell of Uracil and Thymine Oleg V. Shishkin1,2, Leonid Gorb2 and Jerzy Leszczynski2* 1Department of Alkali Halide Crystals, Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue., Kharkiv 310001, Ukraine 2Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, MS 39217, USA E-mail: [email protected] *Author to whom correspondence should be addressed. Received: 4 January 2000 / Accepted: 30 March 2000 / Published: 4 March 2000 Abstract: The molecular geometry of complexes of uracil and thymine with 11 water mole- cules was calculated using the density functional theory with the B3LYP functional. The standard 6-31G(d) basis set has been employed. It was found that the arrangement of water molecules forming a locked chain around the nucleobases significantly differs for uracil and thymine. The presence of a methyl group in thymine results in strong non-planarity of the hydrated shell. The existence of C-H...O hydrogen bonds between the water molecules and the hydrophobic part of the nucleobases is established. Interactions with water molecules cause some changes in the geometry of uracil and thymine which can be explained by the contribution of a zwitter-ionic dihydroxy resonance form into the total structure of the molecules. Keywords: Uracil, Thymine, Hydration, Molecular structure, Hydrogen bonds, Density functional theory. Introduction Since Franklin and Gosling [1] examined the first fibers of DNA it has been known that DNA oc- curs in vivo in the hydrated form.
    [Show full text]
  • Distribution of Nucleosides in Populations of Cordyceps Cicadae
    Molecules 2014, 19, 6123-6141; doi:10.3390/molecules19056123 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Distribution of Nucleosides in Populations of Cordyceps cicadae Wen-Bo Zeng 1, Hong Yu 1,*, Feng Ge 2, Jun-Yuan Yang 1, Zi-Hong Chen 1, Yuan-Bing Wang 1, Yong-Dong Dai 1 and Alison Adams 3 1 Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China; E-Mails: [email protected] (W.-B.Z.); [email protected] (J.-Y.Y.); [email protected] (Z.-H.C.); [email protected] (Y.-B.W.); [email protected] (Y.-D.D.) 2 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; E-Mail: [email protected] 3 Department of Biological Sciences, College of Engineering, Forestry and Natural Science, Northern Arizona University, Flagstaff, AZ 86011-5640, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +86-137-006-766-33; Fax: +86-871-650-346-55. Received: 15 January 2014; in revised form: 25 April 2014 / Accepted: 5 May 2014 / Published: 14 May 2014 Abstract: A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data.
    [Show full text]
  • Deoxyadenosine Triphosphate As a Mediator of Deoxyguanosine Toxicity in Cultured T Lymphoblasts
    Deoxyadenosine triphosphate as a mediator of deoxyguanosine toxicity in cultured T lymphoblasts. G J Mann, R M Fox J Clin Invest. 1986;78(5):1261-1269. https://doi.org/10.1172/JCI112710. Research Article The mechanism by which 2'-deoxyguanosine is toxic for lymphoid cells is relevant both to the severe cellular immune defect of inherited purine nucleoside phosphorylase (PNP) deficiency and to attempts to exploit PNP inhibitors therapeutically. We have studied the cell cycle and biochemical effects of 2'-deoxyguanosine in human lymphoblasts using the PNP inhibitor 8-aminoguanosine. We show that cytostatic 2'-deoxyguanosine concentrations cause G1-phase arrest in PNP-inhibited T lymphoblasts, regardless of their hypoxanthine guanine phosphoribosyltransferase status. This effect is identical to that produced by 2'-deoxyadenosine in adenosine deaminase-inhibited T cells. 2'-Deoxyguanosine elevates both the 2'-deoxyguanosine-5'-triphosphate (dGTP) and 2'-deoxyadenosine-5'-triphosphate (dATP) pools; subsequently pyrimidine deoxyribonucleotide pools are depleted. The time course of these biochemical changes indicates that the onset of G1-phase arrest is related to increase of the dATP rather than the dGTP pool. When dGTP elevation is dissociated from dATP elevation by coincubation with 2'-deoxycytidine, dGTP does not by itself interrupt transit from the G1 to the S phase. It is proposed that dATP can mediate both 2'-deoxyguanosine and 2'-deoxyadenosine toxicity in T lymphoblasts. Find the latest version: https://jci.me/112710/pdf Deoxyadenosine Triphosphate as a Mediator of Deoxyguanosine Toxicity in Cultured T Lymphoblasts G. J. Mann and R. M. Fox Ludwig Institute for Cancer Research (Sydney Branch), University ofSydney, Sydney, New South Wales 2006, Australia Abstract urine of PNP-deficient individuals, with elevation of plasma inosine and guanosine and mild hypouricemia (3).
    [Show full text]
  • CFA As a Clinically Translatable Probe for PET Imaging of Deoxycytidine Kinase Activity
    [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity Woosuk Kima,b,1, Thuc M. Lea,b,1, Liu Weia,b, Soumya Poddara,b, Jimmy Bazzya,b, Xuemeng Wanga,b, Nhu T. Uonga,b, Evan R. Abta,b, Joseph R. Capria,b, Wayne R. Austinc, Juno S. Van Valkenburghb,d, Dalton Steeleb,d, Raymond M. Gipsond, Roger Slavika,b, Anthony E. Cabebea,b, Thotsophon Taechariyakula,b, Shahriar S. Yaghoubie, Jason T. Leea,f, Saman Sadeghia,b, Arnon Lavieg, Kym F. Faulla,b,h,i, Owen N. Wittea,j,k,l, Timothy R. Donahuea,b,m, Michael E. Phelpsa,f,2, Harvey R. Herschmana,b,n, Ken Herrmanna,b, Johannes Czernina,b, and Caius G. Radua,b,2 aDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095; bAhmanson Translational Imaging Division, University of California, Los Angeles, CA 90095; cAbcam, Cambridge, MA 02139-1517; dDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; eCellSight Technologies, Inc., San Francisco, CA 94107; fCrump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095; gDepartment of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607; hThe Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095; iDepartment of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095; jDepartment of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095; kHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; lEli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095; mDepartment of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and nDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Contributed by Michael E.
    [Show full text]
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
    [Show full text]