Society News UK Bioscience Strengthened by Agreement Between Three Learned Societies

Total Page:16

File Type:pdf, Size:1020Kb

Society News UK Bioscience Strengthened by Agreement Between Three Learned Societies News Society News UK Bioscience strengthened by agreement between three learned societies ree of the largest UK learned societies in the biological and environmental sciences took a signi cant step towards integrating the sector on 10 March, when they signed a Downloaded from http://portlandpress.com/biochemist/article-pdf/31/3/55/7004/bio031030055.pdf by guest on 26 September 2021 Memorandum of Understanding on future activities. ey are the Society for Experi- mental Biology, the Biochemical Society and the British Ecological Society. Between them, these organizations have over 10000 individ- ual members. e interests of their members, who include many Nobel Prize winners and other leading UK scientists, span the entire range of biological enquiry. e Memorandum commits the three societies to work together in a variety of key areas, including the organization of scien- ti c meetings, education, policy and public Professor Martin Humphries, Chair BS, seated. Standing, left to right: engagement. It was signed at the House of Professor Malcolm Press, President, British Ecological Society; Professor Commons in a ceremony witnessed by Lord Ian Johnston, President, British Ecological Society; Lord Hunt, Minister Hunt (Minister for Sustainable Development of Sustainable Development and Energy Innovation, and Deputy Leader and Energy Innovation, and Deputy Leader of the House of Lords; and Phil Willis, MP, Chair, Innovation, University, of the House of Lords) and Phil Willis MP Science and Skills Committee (Chair of the Innovation, Universities, Science and Skills Committee). Government and build an ever stronger base for UK science”. Lord Hunt commented: “Biosciences are Professor Malcolm Press, President of the British Ecological the emerging science of the 21st Century, Society, added: “Some of the greatest challenges that face the world and it is very positive that three of its most – climate change, the spread of infectious diseases, and food security, signi cant learned societies, including two for example – depend for solutions on interdisciplinary research in who are approaching their centenary are the environmental and biosciences. Our closer co-operation can only coming together in this way”. expedite progress”. Professor Martin Humphries, Chairman Professor Ian Johnston, President of the Society for Experimental of the Biochemical Society, said: “the old Biology, said: “We recognize that barriers between disciplines only divisions between biological disciplines that impede scienti c progress and we anticipate major bene ts to ow de ned our subject in the early years of the from collaborating with other learned societies. Furthermore, in areas last century have melted away. Biologists such as education and public outreach, the three Societies will have need to work together to help and in uence much greater impact by working together.” ■ Breaking News At a special meeting on 1 May in Edinburgh, dum of Understanding (above). e building will provide joint o ce the Biochemical Society Trustees approved a space for the three Societies, the potential to rent accommodation to plan to purchase and refurbish a building in other, similar organizations and a purpose-built meetings suite that central London together with the other Socie- will be available for focused meetings of up to about 150 participants. ties who are co-signatories to the Memoran- More details will follow in the next issue of e Biochemist… ■ June 2009 © 2009 The Biochemical Society 55 News 2010 Biochemical Society Award winners Each year, the Biochemical Society makes a series of prestigious awards that recognize excellence and achievement in both speci c and general elds of science. (See www.biochemistry.org/Awards/tabid/366/Default.aspx for details.) e winners for 2010 are as follows. The Colworth Medal The Keilin Memorial Lecture Mark Dillingham (Bristol, UK) Andrew Halestrap (Bristol, UK) Professor Andrew Halestrap has been awarded Dr Mark Dillingham works in the eld of interac- the Keilin Memorial Lecture in recognition of his tions between proteins and DNA, particularly impressive body of novel research in the area of Downloaded from http://portlandpress.com/biochemist/article-pdf/31/3/55/7004/bio031030055.pdf by guest on 26 September 2021 the relationships between structure, function and energy metabolism and mitochondrial biology. mechanism of action of DNA helicases. Mark has, at a very early stage He discovered the mitochondrial and plasma membrane mono- in his career, made an outstanding impact on the eld, and is one of the carboxylate transporters and has led the field of their characteriza- outstanding biochemists of his generation. Speci cally, his work with tion. In addition, he is making major advances in elucidating the colleagues on the crystal structure and translocation mechanism of mechanism of the mitochondrial permeability transition pore – the PcrA helicase, showed that this helicase functions by an inchworm one of the main executors of ischaemic cell death. mechanism – unquestionably a ‘classic’ nding. Andrew Halestrap: homology model of rat MCT1 The Novartis Medal and Prize (monocarboxylate transporter 1) based on the D. Grahame Hardie (Dundee, UK) Escherichia coli glycerol 3-phosphate transporter (PDB code 1PW4) template. Acidic residues Professor Grahame Hardie was awarded the Novartis (aspartate, glutamate) are represented by red Medal and Prize for his discovery of the AMP-acti- spheres at the Cα position, basic residues (arginine, vated protein kinase (AMPK), the elucidation of the lysine) by blue spheres, histidine by pink spheres and mechanism by which it is regulated, and the establishment of its key role aromatic residues frequently found at the phospholipid interface (tyrosine, as a sensor of cellular energy status, and as a ‘metabolic master switch’ in tryptophan) in yellow essentially all eukaryotic cells. As a result of Grahame’s work, the AMPK system has emerged as a major eld of research in its own right, and as a key target for the development of drugs to treat obesity. His studies The Morton Lecture linking signal transduction pathways to metabolism have made major Peter Cullen (Bristol, UK) contributions to elds as diverse as exercise physiology and cancer. Professor Peter Cullen has made an outstanding contribution to lipid biochemistry, beginning with his work on inositol phosphates and then AstraZeneca Award moving onww to carry out seminal work on Bonnie Wallace (Birkbeck, London, UK) phosphatidylinostol (PI) phosphates His work on PI lipids, and the proteins that bind them has made groundbreaking internation- As a world leader in the area of membrane protein ally recognized contributions to both the cell signalling and the research, Professor Bonnie Wallace more than meets membrane trafficking communities. His recent work on SNX4 and the criteria of ‘biochemistry which leads to develop- its role in transferrin receptor sorting is a very elegant study. The ment of a new method’, for which she has been awarded the AstraZeneca mechanistic insights established for dynein-mediated transport in award in recognition of her outstanding work in developing Synchrotron this context and his further work on SNX1 and p150glued/dynein radiation circular dichroism (SRCD) spectroscopy and promoting will continue to have a substantial impact on the field. this as an exciting technique for the characterization of complex biochemical systems. Her pioneering the development of Peter Cullen: the endocytic network comprises the Protein Circular Dichroism a series of interconnected membranous Data Bank (PCDDB) will organelles that together regulate receptor provide benchmark validated sorting and signalling events. Re-modelling of data and will be invaluable endocytic function underlies a variety of human for protein pharmaceutical diseases including cancer, neurodegeneration drug development programmes. and pathogenic infection. 56 June 2009 © 2009 The Biochemical Society News GlaxoSmithKline Award Gideon Davies (York, UK) Professor Gideon Davies has elegantly combined protein crystallography and chemistry to solve a number of crucial biological questions. Concen- trated in the area of glycosyl transfer, his papers have set the gold standard of conceptual rigour, and have been the largest single contributor to our present understanding of enzymic glycoside hydrolysis. e GlaxoSmithKline Award recognizes Gideon’s contribution to potential therapeutics for various diseases through his design and chemical synthesis of highly selective and potent inhibitors Downloaded from http://portlandpress.com/biochemist/article-pdf/31/3/55/7004/bio031030055.pdf by guest on 26 September 2021 of enzymes that break or make glycosidic bonds. Gideon Davies: active centre of the O-GlnNAcase enzyme with a mechanism and three-dimensional structure inspired n-butyl thiazoline inhibitor. Davies, in collaboration with the Vocadlo group at Simon Fraser University, has been using such compounds both to challenge preconceptions about Type 2 diabe- tes as well as to decrease levels of the disease-causing hyperphosphorylated form of the microtubule tau protein in rat brain Early Career Research Awards: e awards aim to recognize the impact of research carried out by early career scientists, i.e. those who have been awarded their PhD within the last 5 years. It is expected that successful candidates will have produced international quality research outputs, and be able to demonstrate ambi- tions and aspirations consistent with the potential to achieve
Recommended publications
  • Rigaku Crystallography Times
    Volume 12, No. 9, November 2020 WELCOME RIGAKU TOPIQ WEBINARS Rigaku has developed a series of Good day everyone. We've had a busy month and have a lot to show for it. 20-30 minute webinars that cover a First, we have almost 400 people registered for the Advanced Topics School broad range of topics in the fields on December 7-11. We still have plenty of room so you can register below. of X-ray diffraction, X-ray fluorescence and X-ray imaging. REGISTER You can register here and also watch recordings if you cannot attend live sessions. We are introducing a new hybrid counting detector this month, the HyPix-Arc 100°, which puts the unique features of the HyPix-Arc 150° into a more compact form factor. The researcher in the spotlight this month is Dr. Johan Turkenburg, the X-ray RIGAKU REAGENTS Facilities Manager at York University's Structural Biology Laboratory. This month we have a special treat, an article about Claire Jones, a deaf crystallographer who attended our first Practical Crystallography School with the assistance of her palantypist (stenographer). I hope you find her life story as inspiring as I have. Our usual sections include a few noteworthy crystallography papers, a couple of interesting videos, one about Arcimboldo and the other a TED talk about Marie Curie, and links to the Arcimboldo website and applets for teaching Rigaku Reagents has extended its Braggâs law as well as other crystallographic concepts. This month, Jeanette sales channels and is collaborating reviews Equity in Science, which as the title suggests is about diversity, with SWISSCI to provide Rigaku inclusion and representation in the scientific enterprise.
    [Show full text]
  • Carbohydrate Anomalies in the PDB
    This is a repository copy of Carbohydrate anomalies in the PDB. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/95242/ Version: Accepted Version Article: Agirre, Jon orcid.org/0000-0002-1086-0253, Davies, Gideon orcid.org/0000-0002-7343- 776X, Wilson, Keith orcid.org/0000-0002-3581-2194 et al. (1 more author) (2015) Carbohydrate anomalies in the PDB. NATURE CHEMICAL BIOLOGY. p. 303. ISSN 1552- 4450 https://doi.org/10.1038/nchembio.1798 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ NATURE CHEMICAL BIOLOGY | CORRESPONDENCE • Carbohydrate anomalies in the PDB Jon Agirre, Gideon Davies, Keith Wilson & Kevin Cowtan York Structural Biology Laboratory, Department of Chemistry, The University of York, England. Nature Chemical Biology 11, 303 (2015) doi:10.1038/nchembio.1798 Published online 17 April 2015 Erratum (July, 2015) The importance of carbohydrates both to fundamental cellular biology and as integral parts of therapeutics (including antibodies) continues to grow.
    [Show full text]
  • Postgraduate Prospectus 2013
    POSTGRADUATE PROSPECTUS PROSPECTUS POSTGRADUATE 2013 2013 Postgraduate Prospectus www.york.ac.uk University contacts University of York Student Recruitment International Students’ Association Heslington and Admissions Tel: +44 (0)1904 323724 York YO10 5DD Email: [email protected] Tel: +44 (0)1904 320000 Application enquiries Website: www.yusu.org/isa Tel: +44 (0)1904 324000 Fax: +44 (0)1904 323433 Languages for All Fax: +44 (0)1904 323538 Minicom: +44 (0)1904 324283 Tel: +44 (0)1904 322493 Email: [email protected] Website: www.york.ac.uk Email: [email protected] Website: www.york.ac.uk/study/ Facebook: www.facebook.com/ Website: www.york.ac.uk/lfa universityofyork postgraduate Nursery International students Tel: +44 (0)1904 323737 The colleges Tel: +44 (0)1904 323534 Email: [email protected] Fax: +44 (0)1904 323538 Alcuin Website: www.york.ac.uk/univ/nrsry Email: [email protected] Provost: Tony Ward Website: www.york.ac.uk/study/international Registry Services Porters: +44 (0)1904 323300 Tel: +44 (0)1904 324643 College Administrator: +44 (0)1904 323313 Other information Email: [email protected] Derwent Website: www.york.ac.uk/registry-services Accommodation Office Provost: Dr Rob Aitken Tel: +44 (0)1904 322165 Student Financial Support Unit Porters: +44 (0)1904 323500 Fax: +44 (0)1904 324030 Tel: +44 (0)1904 324043 College Administrator: +44 (0)1904 323513 Email: [email protected] Fax: +44 (0)1904 324142 Goodricke Website: www.york.ac.uk/accommodation Email: [email protected] Website: www.york.ac.uk/studentmoney
    [Show full text]
  • Carbohydrate Active Enzymes in Medicine and Biotechnology
    19–21 AUGUST 2015 University of St Andrews, UK A joint Biochemical Society/ DEADLINES Royal Society of Chemistry Focused Meeting Abstract submission: Carbohydrate Active 15 JUNE 2015 Earlybird registration: Enzymes in Medicine 17 JULY 2015 and Biotechnology Organizers: Tracey Gloster Rob Field Gideon Davies Jerry Turnbull Overview: Carbohydrate active enzymes are vital in an Image kindly supplied by Tracey Gloster, University of St Andrews, UK Andrews, of St University Gloster, Tracey Image kindly supplied by abundance of cellular processes. These enzymes catalyse biologically important reactions and malfunction of these is often implicated in diseases. Fundamental to carbohydrate manipulation is gaining an understanding of such enzymes from a mechanistic, bioengineering, structural, functional, and biological viewpoint. Topics: * Insights into carbohydrate active enzymes in medicine * Use of carbohydrate active enzymes in biotechnology * Understanding mechanism and structure of carbohydrate active enzymes * Exploiting carbohydrate active enzymes in biosynthesis For a full programme please visit: www.biochemistry.org Sponsored by: 19–21 AUGUST 2015 University of St Andrews, UK A joint Biochemical Society/ Royal Society of Chemistry Focused Meeting DEADLINES Abstract submission: Carbohydrate Active 15 JUNE 2015 Enzymes in Medicine Earlybird registration: and Biotechnology 17 JULY 2015 Researching? Oral communication slots available. Award Lecture Studying? Apply for a student Sabine Flitsch – RSC Interdisciplinary Prize 2014 bursary online.
    [Show full text]
  • Information Quarterly Protein Crystallograpby
    DARESBURY LABORATORY INFORMATION QUARTERLY for PROTEIN CRYSTALLOGRAPBY An Informal Newsletter associated with Collaborative Computational Project No,4 on Protein Crystallography Number 21 OCTOBER 1987 Contents Editorial 1 Beta-lactoglobulin: a transport protein 3 (Stephen Yewdall, Leeds) Electron density maps from Laue photographs of protein crystals 5 (Janos Hajdu et al., Oxford) Crystal structure determination using intensity data from Laue 11 photographs (Jennifer Glucas et al., Liverpool) Hardware changes at Birkbeck 17 (F. Hayes, Birkbeck) Measurement of oscillation photographs collected on the SRS: 19 recent practical experience (Peter Brick et al., Imper'i'al College) A computer-controlled syringe system for crystallisation 21 screening (Jan White et al., Sh~ffield) Some UK crystallography JANET addresses 25 (Andrew Lyall, Bristol) Editor: Sue Bailey Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England. EDITORIAL Thanks are due to the contributersto this edition of the newsletter and to Peter Brick for organising the colleotion of contributions. A copy of toe papers in this newsletter have been sent to Keith Wilson for inclusion in the EACeM (European Association for Crystallography of Biological Macromolecules) newsletter. I would like to _take this opportunity to give ad'ITance publicity for a meeting to be organised by the CCP4 and Daresbury Laboratory. The meeting will take place on the 5-6 of Februaury 1_988 and will be entitled 'Improving Protein Phases'. Practical applications of ~olvent flattening, density averaging, direct methods etc. will be covered. A notice announcing the meetin~ is to be circulat,ed in the near future. Sue Bailey 8th October 1987 " 1 , S-LACTOGLOBULIN; a transport protein.
    [Show full text]
  • The Case for Chemistry What Comes Next for Science Funding?
    RSCNEWS JULY 2015 www.rsc.org The case for chemistry What comes next for science funding? A better future for Kibera p10 Chemophobia, a chemists’ construct p13 Students from 15 schools across the northwest attended the Basil McCrea MLA joins students at the Salters’ Festival event at Salters’ Festival event at Liverpool JMU. (© Matt Thomas) Queen’s University Belfast. (© Queen’s University Belfast) Students enjoy solving puzzles with chemistry at Aberystwyth Patiently waiting for results at Aberystwyth University. University. (© Centre for Widening Participation and Social (© Centre for Widening Participation and Social Inclusion, Inclusion, Aberystwyth University) Aberystwyth University) Aoife Nash and Maeve Stillman from St Mary’s College Derry at the Salters’ Festival of Chemistry at North West Regional College. (© North West Regional College) Flash and bang demo at Queen’s University Belfast. (© Queen’s University Belfast) Level 3 forensic science student Dillon Donaghey offers some advice to some Thornhill College pupils during the Salters’ Festival of Chemistry at North West Regional College. (© North West Regional College) See more about the Salters’ Festival on p19. WEBSITE Find all the latest news at www.rsc.org/news/ Contents JULY 2015 Editor: Edwin Silvester Design and production: REGULARS Vivienne Brar 4 Contact us: Snapshot 7 RSC News editorial office News and updates from around Thomas Graham House Science Park, Milton Road the organisation Cambridge, CB4 0WF, UK 6 Tel: +44 (0)1223 432294 One to one Email: [email protected]
    [Show full text]
  • An Overview of Activity-Based Probes for Glycosidases
    Available online at www.sciencedirect.com ScienceDirect An overview of activity-based probes for glycosidases 1 1 2 Liang Wu , Zachary Armstrong , Sybrin P Schro¨ der , 2 2 2 Casper de Boer , Marta Artola , Johannes MFG Aerts , 2 1 Herman S Overkleeft and Gideon J Davies As the scope of modern genomics technologies increases, so sequences are encoded by genes, but whose functions does the need for informative chemical tools to study functional are often difficult to deconvolute from the genetic code. biology. Activity-based probes (ABPs) provide a powerful suite of Enzyme structures and functions are hard to predict from reagents to probe the biochemistry of living organisms. These primary sequence alone, and their activities may be further probes, featuring a specificity motif, a reactive chemical group modulated by post-translational modifications, processing, and a reporter tag, are opening-up large swathes of protein intermolecular interactions and subcellular localization. chemistry to investigation in vitro, as well as in cellular extracts, cells and living organisms in vivo. Glycoside hydrolases, by virtue Activity-based protein profiling (ABPP) has gained prom- of their prominent biological and applied roles, provide a broad inence as a powerful tool for the functional annotation of canvas on which ABPs may illustrate their functions. Here we enzymes within complex biological milieu. ABPP relies provide an overview of glycosidase ABP mechanisms, and on the availability of suitable activity-based probes review recent ABP work in the
    [Show full text]
  • Communicating Biochemistry: Meetings and Events
    © The Authors. Volume compilation © 2011 Portland Press Limited Chapter 3 Communicating Biochemistry: Meetings and Events Ian Dransfield and Brian Beechey Scientific conferences organized by the Biochemical Society represent a key facet of activity throughout the Society’s history and remain central to the present mission of promoting the advancement of molecular biosciences. Importantly, scientific conferences are an important means of communicating research findings, establishing collaborations and, critically, a means of cementing the community of biochemical scientists together. However, in the past 25 years, we have seen major changes to the way in which science is communicated and also in the way that scientists interact and establish collabo- rations. For example, the ability to show videos, “fly through” molecular structures or show time-lapse or real-time movies of molecular events within cells has had a very positive impact on conveying difficult concepts in presentations. However, increased pressures on researchers to obtain/maintain funding can mean that there is a general reluctance to present novel, unpublished data. In addition, the development of email and electronic access to scientific journals has dramatically altered the potential for communi- cation and accessibility of information, perhaps reducing the necessity of attending meetings to make new contacts and to hear exciting new science. The Biochemical Society has responded to these challenges by progressive development of the meetings format to better match the
    [Show full text]
  • 1 Oxidative Desulfurization Pathway for Complete Catabolism of Sulfoquinovose by Bacteria 1 2 Mahima Sharma,1 James P. Lingford
    1 Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria 2 3 Mahima Sharma,1 James P. Lingford,2,3 Marija Petricevic,4,5 Alexander J.D. Snow,1 Yunyang 4 Zhang,4,5 Michael A. Järvå,2,3 Janice W.-Y. Mui,4,5 Nichollas E. Scott,6 Eleanor C. Saunders,7 5 Runyu Mao,2,3 Ruwan Epa,4,5 Bruna M. da Silva,7,8 Douglas E.V. Pires,7,8 David B. Ascher,5,7 6 Malcolm J. McConville,7 Gideon J. Davies,1* Spencer J. Williams,4,5* Ethan D. Goddard- 7 Borger2,3* 8 9 10 1 York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, 11 YO10 5DD, U.K. 12 2 The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. 13 3 Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia. 14 4 School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. 15 5 Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 16 Victoria 3010, Australia 17 6 Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty 18 Institute for Infection and Immunity, Parkville, Victoria 3010, Australia. 7 19 Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology 20 Institute, University of Melbourne, Parkville, Victoria 3010, Australia 21 8 School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria 22 3010, Australia 23 24 Keywords: carbohydrate metabolism, sulfur cycle, oxidative desulfurization 25 26 *Correspondence and requests for materials should be addressed to G.J.D.
    [Show full text]
  • View PDF Version
    Organic & Biomolecular Chemistry View Article Online COMMUNICATION View Journal | View Issue Distortion of mannoimidazole supports a B2,5 boat transition state for the family GH125 Cite this: Org. Biomol. Chem., 2019, 17, 7863 α-1,6-mannosidase from Clostridium perfringens Received 17th May 2019, Accepted 2nd July 2019 Alexandra Males, a Gaetano Speciale,b Spencer J. Williams *b and DOI: 10.1039/c9ob01161g Gideon J. Davies *a rsc.li/obc Enzyme transition-state mimics can act as powerful inhibitors family members perform catalysis tend to be conserved and allow structural studies that report on the conformation of across a family and lead to substrate hydrolysis with either the transition-state. Here, mannoimidazole, a mimic of the tran- retention or inversion of anomeric stereochemistry.6 sition state of mannosidase catalyzed hydrolysis of mannosides, is Inversion of stereochemistry occurs in a single step reaction Creative Commons Attribution 3.0 Unported Licence. showntobindinaB2,5 conformation on the Clostridium perfrin- when water acts as a nucleophile. Retention of stereo- gens GH125 α-1,6-mannosidase, providing additional evidence of chemistry is typically achieved through a two-step substi- O 1 a S2–B2,5– S5 conformational itinerary for enzymes of this tution mechanism involving participation by an enzymic family. nucleophile or by a pendant neighboring group on the – substrate.6 8 Both pathways benefit from enzymatic amino A conformational itinerary describes how a molecule changes acids that provide general acid catalysis to promote the depar- shape along a reaction coordinate. For reactions catalysed by ture of the anomeric groups, and general base catalysis to enzymes, the three-dimensional fold of the protein and its promote nucleophilic attack by water.
    [Show full text]
  • The Roy L. Whistler International Award in Carbohydrate Chemistry 2006
    Announcement The Roy L. Whistler International Award in Carbohydrate Chemistry 2006 The International Carbohydrate Organization is pleased to announce that the Roy L Whistler International Award in Carbohydrate Chemistry for 2006 has been won by Gideon Davies of the University of York, UK. In 1984, the International Carbohydrate Organization established the Award in honour of Professor Roy L Whistler, to recognize scientists ‘who have made contributions of excellence in carbohydrate chemistry and biochemistry and with promise of continuing significant contributions’. The Award is recognized with a plaque, a cheque for US$10 000, and an invitation to present the opening lecture at the XXIII International Carbohydrate Symposium to be held at Whistler, BC, Canada in July, 2006. Gideon Davies received his BSc in Biochemistry in 1985 from the University of Bristol, UK. He remained in Bristol for his PhD under the joint supervision of Herman Watson and Len Hall on the molecular biology, structure and mechanism of glycolytic enzymes; in 1990 he moved to the European Molecular Biology Laboratory, initially as an EMBO fellow, to work with Keith S Wilson on the use of synchrotron radiation in X-ray crystallography. Soon after, Gideon joined Guy Dodson's group in the Chemistry Department of the University of York, to work first on DNA gyrase with Dale Wigley, and then to continue his own work on ‘carbohydrate-active’ enzymes. Gideon has remained in York ever since but enjoyed extended study visits to work with Alwyn Jones (Uppsala, 1994), Bernard Henrissat (then at CERMAV, Grenoble, 1995) and Steve Withers (UBC, 2000), before taking up a Royal Society University Research Fellowship at York from 1996.
    [Show full text]
  • Annual Report 2012
    SCHOOL OF CHEMISTRY Annual Report 2012 www.chemistry.unimelb.edu.au 1 SCHOOL OF CHEMISTRY Annual Report 2012 SPONSORS Agilent Technologies Australian Nuclear Science and Technology Organisation Australian Research Council Australian Synchrotron BHP Billiton Chemistry Education Association Inc Dairy Innovation Australia Ltd Dulux Australia Huntsman Corporation Australia Pty Ltd Melbourne Water National Health and Medical Research Council Peter MacCallum Cancer Institute Stawell Gold Mines CONTACT THE SCHOOL Chemistry Building The University of Melbourne Victoria 3010 Australia +61 3 8344 6567 www.chemistry.unimelb.edu.au Compiled by Jenny Long [email protected] FRONT COVER IMAGE Materials prepared by Dehong Chen and Lu Cao within the School of Chemistry’s Caruso research group. These mesoporous titania beads with spiky particles decorating the surface have been tested in dye-sensitised solar cell applications, in collaboration with Monash University, achieving over 10 % efficiency. 2 School of Chemistry Annual Report 2012 CONTENT Introduction from the Head of School 4 Our People 5 News 6 Societies 14 Chemistry Building redevelopment 15 Prizes and Awards 17 Chemistry Outreach Program 18 Alumni Function 2012 19 Subjects 20 Key teaching and learning statistics 21 Research Higher Degree student completions 22 Research Funding 2012 23 ARC Centre of Excellence for Free Radical Chemistry and Biotechnology 25 Conferences 2012 26 Inorganic and Analytical Chemistry Seminar Program 31 Organic Chemistry Seminar Program 33 Physical Chemistry Seminar Program 35 Publications 2012 36 www.chemistry.unimelb.edu.au 3 INTRODUCTION FROM THE HEAD OF SCHOOL Once again we present the Annual Our outreach activities on campus and Report from the School of Chemistry at schools throughout Victoria engage and celebrate some of our many students at all levels.
    [Show full text]