(200731) Hypromellose Phthalate (220824) Ibudilast

Total Page:16

File Type:pdf, Size:1020Kb

(200731) Hypromellose Phthalate (220824) Ibudilast 21222122 Infrared Reference Spectra JP XVII Hypromellose Phthalate (200731) Hypromellose Phthalate (220824) Ibudilast The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21232123 Ibuprofen Ibuprofen Piconol Ifenprodil Tartrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21242124 Infrared Reference Spectra JP XVII Imidapril Hydrochloride Imipenem Hydrate Indapamide The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21252125 Indenolol Hydrochloride Indometacin Iohexol The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21262126 Infrared Reference Spectra JP XVII Iopamidol Iotalamic Acid Iotroxic Acid The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21272127 Ipratropium Bromide Hydrate Ipriflavone Irbesartan The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21282128 Infrared Reference Spectra JP XVII Irsogladine Maleate Isoflurane L-Isoleucine The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21292129 Isoniazid Isosorbide Isosorbide Mononitrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21302130 Infrared Reference Spectra JP XVII Isoxsuprine Hydrochloride Itraconazole Ketamine Hydrochloride The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21312131 Ketoconazole Ketoprofen Ketotifen Fumarate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21322132 Infrared Reference Spectra JP XVII Kitasamycin Acetate Kitasamycin Tartrate Labetalol Hydrochloride The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21332133 Anhydrous Lactose Lactose Hydrate Lafutidine The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21342134 Infrared Reference Spectra JP XVII Lansoprazole Latamoxef Sodium Lenampicillin Hydrochloride The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21352135 L-Leucine Leuprorelin Acetate Levallorphan Tartrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21362136 Infrared Reference Spectra JP XVII Levofloxacin Hydrate Lidocaine Lincomycin Hydrochloride Hydrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21372137 Lisinopril Hydrate Lobenzarit Sodium Lorazepam The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21382138 Infrared Reference Spectra JP XVII Losartan Potassium Loxoprofen Sodium Hydrate L-Lysine Acetate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21392139 L-Lysine Hydrochloride Manidipine Hydrochloride D-Mannitol The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21402140 Infrared Reference Spectra JP XVII Maprotiline Hydrochloride Medazepam Medroxyprogesterone Acetate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21412141 Mefloquine Hydrochloride Mefruside Menatetrenone The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21422142 Infrared Reference Spectra JP XVII Mepitiostane Mepivacaine Hydrochloride Mequitazine The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21432143 Mestranol Metenolone Acetate Metformin Hydrochloride The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21442144 Infrared Reference Spectra JP XVII L-Methionine Methotrexate Methyldopa Hydrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21452145 dl-Methylephedrine Hydrochloride Methyl Parahydroxybenzoate Methylprednisolone Succinate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21462146 Infrared Reference Spectra JP XVII Methyltestosterone Meticrane Metildigoxin The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21472147 Metoprolol Tartrate Metronidazole Mexiletine Hydrochloride The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the
Recommended publications
  • Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
    International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL.
    [Show full text]
  • Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
    Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs.
    [Show full text]
  • The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2005 The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement Thomas B. Morgan Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Mental and Social Health Commons, and the Psychology Commons Recommended Citation Morgan, Thomas B., "The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement" (2005). Dissertations. 1050. https://scholarworks.wmich.edu/dissertations/1050 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE EFFECTS OF DEXTROMETHORPHAN ON RESPONSE ACQUISITION WITH DELAYED REINFORCEMENT by Thomas B. Morgan A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Psychology Western Michigan University Kalamazoo, Michigan June 2005 THE EFFECTS OF DEXTROMETHORPHAN ON RESPONSE ACQUISITION WITH DELAYED REINFORCEMENT Thomas B. Morgan, Ph. D. Western Michigan University, 2005 The current study examined in 2-h sessions the effects of intraperitoneal injec- tions of dextromethorphan (DM) (0.0, 40.0, 60.0, and 80.0 mg/kg) on the acquisition of lever-press responding in rats that were exposed to a two-lever procedure in which responses on the reinforcement lever (RL) were reinforced with food after a 15-s re- setting delay and responses on the cancellation lever cancelled a scheduled reinforcer.
    [Show full text]
  • A Steroid Modulatory Domain on NR2B Controls N-Methyl-D-Aspartate Receptor Proton Sensitivity
    A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity Ming-Kuei Jang†, Dale F. Mierke‡, Shelley J. Russek†, and David H. Farb†§ †Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118; and ‡Department of Molecular Pharmacology, Division of Biology and Medicine, and Department of Chemistry, Brown University, Providence, RI 02912 Edited by Erminio Costa, University of Illinois, Chicago, IL, and approved April 5, 2004 (received for review March 15, 2004) N-methyl-D-aspartate (NMDA) receptor function is modulated by have been shown to regulate native NMDA receptors via distinct several endogenous molecules, including zinc, polyamines, pro- recognition sites; PS modulation is also not dependent on the tons, and sulfated neurosteroids. Zinc, polyamines, and phenyleth- redox state of the receptor (24). To define the mode of action of anolamines exert their respective modulatory effects by exacer- PS and to determine structural components at the NMDA bating or relieving tonic proton inhibition. Here, we report that receptor that are critical for PS modulation, we took advantage pregnenolone sulfate (PS) uses a unique mechanism for enhance- of our previous finding that PS differentially modulates activity ment of NMDA receptor function that is independent of the proton of recombinant receptors containing different NR2 subunits sensor. We identify a steroid modulatory domain, SMD1, on the (25). PS potentiates the response of recombinant NMDA re- NMDA receptor NR2B subunit that is critical for both PS enhance- ceptors containing NR2A or NR2B subunits, while inhibiting the ment and proton sensitivity. This domain includes the J͞K helices response of receptors containing NR2C or NR2D subunits.
    [Show full text]
  • An Ultra Fast and Sensitive Detection of 165 Drugs of Abuse in Human Urine Using Polarity Switching Ultra Performance Liquid Chromatog- Raphy Tandem Mass Spectrometry
    id15306796 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com AAnnaallyyttiiccaaIlSlS N : 0974-7419 Volume 15 Issue 8 CCHHEEAMMn InIdIiSSanTT JoRuRrnYaYl Full Paper ACAIJ, 15(8) 2015 [319-338] An ultra fast and sensitive detection of 165 drugs of abuse in human urine using polarity switching ultra performance liquid chromatog- raphy tandem mass spectrometry Sachin Dubey, Shobha Ahi, Alka Beotra*, Tejinder Kaur, Shila Jain National Dope Testing Laboratory, Ministry of Youth Affairs and Sports, CGO Complex, Lodhi Road, New Delhi, 110003, (INDIA) E-mail : [email protected] ABSTRACT KEYWORDS The screening of wide variety of prohibited substances in a time bound Bioanalytical method; manner by adhering to latest World Anti-Doping Agency (WADA) guide- Sports drug testing; lines is a challenging task for doping control laboratories. The revised crite- UPLC-MS/MS; rion of detection limits (WADATD2013MRPL) has further required the doping Polarity switching; laboratories to review their testing procedures. The present work was aimed WADA. at developing a fast, sensitive and robust analytical method based on solid phase cleanup (SPE) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to achieve the required detection lev- els. The method development involved optimization of deconjugation of phase II metabolites, SPE using mixed-mode ion cartridges for extraction of analytes of wider chemistries; and fast polarity switching UPLC-MS/MS detection. The developed method was validated to detect approximately 165 compounds and/or metabolites prohibited by WADA. The eight min- utes runtime allowed testing of approximately 180 samples in 24 hours at the limit of detection (LOD) of 50% below required detection levels.
    [Show full text]
  • Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION to ETHANOL and WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE
    University of Kentucky UKnowledge Theses and Dissertations--Psychology Psychology 2015 Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION TO ETHANOL AND WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE Anna R. Reynolds Univerity of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Reynolds, Anna R., "Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION TO ETHANOL AND WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE" (2015). Theses and Dissertations--Psychology. 74. https://uknowledge.uky.edu/psychology_etds/74 This Doctoral Dissertation is brought to you for free and open access by the Psychology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Psychology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Mapping the Binding Site of the Neuroprotectant Ifenprodil on NMDA Receptors
    The Journal of Neuroscience, July 15, 2002, 22(14):5955–5965 Mapping the Binding Site of the Neuroprotectant Ifenprodil on NMDA Receptors Florent Perin-Dureau, Julie Rachline, Jacques Neyton, and Pierre Paoletti Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 8544, Ecole Normale Supe´ rieure, 75005 Paris, France Ifenprodil is a noncompetitive antagonist of NMDA receptors control ifenprodil inhibition. Their location in a modeled three- highly selective for the NMDA receptor 2B (NR2B) subunit. It is dimensional structure suggests that ifenprodil binds in the cleft widely used as a pharmacological tool to discriminate sub- of the LIVBP-like domain of NR2B by a mechanism (Venus- populations of NMDA receptors, and derivatives are currently flytrap) resembling that of the binding of Zn on the LIVBP-like being developed as candidate neuroprotectants. Despite nu- domain of NR2A. These results reinforce the proposal that the merous studies on the mechanism of action of ifenprodil on LIVBP-like domains of NMDA receptors, and possibly of other NMDA receptors, the structural determinants responsible for ionotropic glutamate receptors, bind modulatory ligands. More- the subunit selectivity have not been identified. By combining over, they identify the LIVBP-like domain of the NR2B subunit functional studies on recombinant NMDA receptors and bio- as a promising therapeutic target and provide a framework for chemical studies on isolated domains, we now show that ifen- designing structurally novel NR2B-selective
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • Drugs for Complications of Diabetes and Neuropathy and Utilization Thereof
    Europäisches Patentamt *EP001283054A1* (19) European Patent Office Office européen des brevets (11) EP 1 283 054 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 45/00, A61K 31/198, 12.02.2003 Bulletin 2003/07 A61P 3/10, A61P 25/00, A61P 9/00, A61P 13/12 (21) Application number: 01912425.4 (86) International application number: (22) Date of filing: 15.03.2001 PCT/JP01/02094 (87) International publication number: WO 01/068136 (20.09.2001 Gazette 2001/38) (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • KITAHARA, Yoshiro, Pharmaceutical Res. Lab. MC NL PT SE TR Kawasaki-shi, Kanagawa 210-8681 (JP) Designated Extension States: • MIURA, Kyoko, Pharmaceutical Res. Lab. AL LT LV MK RO SI Kawasaki-shi, Kanagawa 210-8681 (JP) (30) Priority: 17.03.2000 JP 2000076542 (74) Representative: Nicholls, Kathryn Margaret et al MEWBURN ELLIS (71) Applicant: Ajinomoto Co., Inc. York House Tokyo 104-8315 (JP) 23 Kingsway London WC2B 6HP (GB) (54) DRUGS FOR COMPLICATIONS OF DIABETES AND NEUROPATHY AND UTILIZATION THEREOF (57) There are provided a medicament excellent in ments, and the like are provided. At least one agent se- prevention, improvement, treatment, etc. of a diabetic lected from an antihypertensive agent, a vasodilating complication, and a medicament excellent in preven- agent and an anti-hyperlipidemic agent may be used at tion, improvement, treatment, etc. of a neuropathy, each the same time with the postprandial blood sugar-lower- using a postprandial blood sugar-lowering agent as an ing agent, by mixing further such at least one agent se- effective ingredient therefor.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • 159 Misuse of Drugs (Controlled Drugs) Order 2001
    MISUSE OF DRUGS (CONTROLLED DRUGS) ORDER 2001 BR 37/2001 MISUSE OF DRUGS ACT 1972 1972 : 159 MISUSE OF DRUGS (CONTROLLED DRUGS) ORDER 2001 The Minister of Health and Family Services, in exercise of the powers conferred on him by section 3(2) of the Misuse Of Drugs Act 1972, makes the following Order: Citation 1 This Order may be cited as the Misuse Of Drugs (Controlled Drugs) Order 2001. Amendment of Schedule 2 to Act No. 159 of 1972 2 Part I of Schedule 2 to the Misuse of Drugs Act 1972 is deleted and the new Part I set forth in the Schedule to this Order is substituted. Commencement 3 This Order commences on 1st August, 2001. SCHEDULE 2 (paragraph 2) PART I 1. The following substances and products, namely:- (a) ACETORPHINE ACETYLDIHYDROCODEINE ALFENTANIL ALLYLPRODINE ALPHACETYLMETHADOL 1989 Revision 1 MISUSE OF DRUGS (CONTROLLED DRUGS) ORDER 2001 ALPHAMEPRODINE ALPHAMETHADOL ALPHAPRODINE ALPRAZOLAM AMPHETAMINE ANILERIDINE ATAMESTANE BENZETHIDINE BENZPHETAMINE BENZYLMORPHINE (3-Benzylmorphine) BETACETYLMETHADOL BETAMEPRODINE BETAMETHADOL BETAPRODINE BEZITRAMIDE BOLANDIOL BOLASTERONE BOLAZINE BOLDENONE BOLENOL BOLMANTALATE BROMAZEPAM BUFOTENINE BUPRENORPHINE CALUUSTERONE CAMAZEPAM CANNABINOL DERIVATIVES CANNABINOL except where contained in Cannabis or Cannabis resin CANNABIS AND CANNABIS RESIN CARFENTANIL CATHINE CATHINONE CHLORDIAZEPOXIDE CHLORPHENTERMINE 4-CHLOROMETHANDIENONE CHORIONIC GONADOTROPHIN (HCG) and NON-HUMAN CHORIONIC GONADOTROPHIN CLENBUTEROL CLOBAZAM CLONAZEPAM CLONITAZENE CLORAZEPIC ACID CLOSTEBOL 2 1989 Revision MISUSE
    [Show full text]