Glun2b Subunit-Containing NMDA Receptor Antagonists Prevent Aβ

Total Page:16

File Type:pdf, Size:1020Kb

Glun2b Subunit-Containing NMDA Receptor Antagonists Prevent Aβ Corrections PHYSICS MICROBIOLOGY Correction for “Distortions and stabilization of simple-cubic Correction for “Chemical sensing in mammalian host-bacterial calcium at high pressure and low temperature,” by Wendy L. Mao, commensal associations,” by David T. Hughes, Darya A. Terek- Lin Wang, Yang Ding, Wenge Yang, Wenjun Liu, Duck Young hova, Linda Liou, Carolyn J. Hovde, Jason W. Sahl, Arati V. Kim, Wei Luo, Rajeev Ahuja, Yue Meng, Stas Sinogeikin, Jinfu Patankar, Juan E. Gonzalez, Thomas S. Edrington, David A. Shu, and Ho-kwang Mao, which appeared in issue 22, June 1, Rasko, and Vanessa Sperandio, which appeared in issue 21, May 25, 2010, of Proc Natl Acad Sci USA (107:9831–9836; first published 2010, of Proc Natl Acad Sci USA (107:9965–9968; first published May 10, 2010; 10.1073/pnas.1002551107). May 17, 2010; 10.1073/pnas.1005279107). ’ fi The authors note that the following statement should be The authors note that due to a printer s error, the af liation added to the Acknowledgments: “V.S. was supported by Na- information for Wendy L. Mao was incorrect. The correct in- tional Institutes of Health Grant AI077613.” stitution name is SLAC. The authors would also like to note that Fig. 5 was incorrect as www.pnas.org/cgi/doi/10.1073/pnas.1008458107 shown. The corrected figure and its legend appear below. NEUROSCIENCE Correction for “GluN2B subunit-containing NMDA receptor an- Phonon DOS (states/meV atom) tagonists prevent Aβ-mediated synaptic plasticity disruption in 50 vivo,” by Neng-Wei Hu, Igor Klyubin, Roger Anwy, and Michael J. 40 Rowan, which appeared in issue 48, December 1, 2009, of Proc Natl Acad Sci USA (106:20504–20509; first published November 16, 30 2009; 10.1073/pnas.0908083106). 20 The authors note that the author name Roger Anwy should have appeared as Roger Anwyl. The corrected author line appears 10 below. The online version has been corrected. Frequency (meV) Frequency a,b a,b b,c 0 Neng-Wei Hu ,IgorKlyubin , Roger Anwyl ,andMichaelJ. a,b,1 Y S R T 0.1 0.2 Rowan Fig. 5. Phonon dispersion relation (Left) and density of states (DOS) (Right) www.pnas.org/cgi/doi/10.1073/pnas.1007564107 for pm Ca-VI. www.pnas.org/cgi/doi/10.1073/pnas.1007813107 12734 | PNAS | July 13, 2010 | vol. 107 | no. 28 www.pnas.org Downloaded by guest on September 27, 2021 GluN2B subunit-containing NMDA receptor antagonists prevent A␤-mediated synaptic plasticity disruption in vivo Neng-Wei Hua,b, Igor Klyubina,b, Roger Anwyl b,c, and Michael J. Rowana,b,1 aDepartment of Pharmacology and Therapeutics, bTrinity College Institute of Neuroscience, and cDepartment of Physiology, Trinity College Dublin, Dublin 2, Ireland Edited by L. L. Iversen, University of Oxford, Oxford, United Kingdom, and approved October 14, 2009 (received for review July 19, 2009) Currently, treatment with the relatively low-affinity NMDA recep- NMDARs, A␤-induced effects can be selectively mediated tor antagonist memantine provides limited benefit in Alzheimer’s through GluN2A over GluN2B subunits (18) and memantine can disease (AD). One probable dose-limiting factor in the use of preferentially block GluN2C/D- over GluN2A/B-containing memantine is the inhibition of NMDA receptor-dependent synaptic NMDARs (19, 20), but see ref. 21. plasticity mechanisms believed to underlie certain forms of mem- In the light of these findings we postulated that protection ory. Moreover, amyloid-␤ protein (A␤) oligomers that are impli- against A␤ inhibition of NMDAR-dependent LTP might be cated in causing the cognitive deficits of AD potently inhibit this achieved with doses of GluN2 subtype selective agents below the form of plasticity. Here we examined if subtype-preferring NMDA threshold for impairing such plasticity on their own. Further- receptor antagonists could preferentially protect against the inhi- more, since deleterious effects of Aß in vitro are dependent on bition of NMDA receptor-dependent plasticity of excitatory syn- TNF␣ action (22) and NMDAR-TNF␣ synergism (23) we also aptic transmission by A␤ in the hippocampus in vivo. Using doses investigated TNF␣’s role in the synaptic plasticity impairing that did not affect control plasticity, antagonists selective for effects of Aß in vivo. NMDA receptors containing GluN2B but not other GluN2 subunits prevented A␤1–42 -mediated inhibition of plasticity. Evidence that Results ␣ the proinflammatory cytokine TNF mediates this deleterious Abrogation of A␤-Mediated Disruption of Hippocampal Synaptic ␣ action of Aß was provided by the ability of TNF antagonists to Plasticity in Vivo by Antagonists Selective for GluN2B-Containing ␤ prevent A 1–42 inhibition of plasticity and the abrogation of a NMDARs. The role of different NMDAR subtypes in mediating ␣ similar disruptive effect of TNF using a GluN2B-selective antag- the inhibitory effect of A␤ on high frequency stimulation (HFS) onist. Moreover, at nearby synapses that were resistant to the induction of LTP at hippocampal CA1 synapses was assessed in ␣ ␤ inhibitory effect of TNF ,A 1–42 did not significantly affect plas- vivo, using antagonists for different GluN2 subunits. We com- ticity. These findings suggest that preferentially targeting GluN2B pared the effect of the antagonist NVP-AAM077 with approx- subunit-containing NMDARs may provide an effective means of imately 10-fold selectivity for GluN2A over GluN2B and ap- preventing cognitive deficits in early Alzheimer’s disease. proximately 2-fold over GluN2C/D, the antagonist ifenprodil which has Ͼ approximately 200-fold selectivity for GluN2B over ͉ ␤ ͉ Alzheimer’s disease amyloid- protein oligomers glutamate other GluN2 subunits, and the antagonist UBP141 with Ͼ approximately 5-fold selectivity for GluN2C/D over GluN2A/B lutamatergic processes are strongly implicated in causing (7, 24). First we titrated the agents against LTP to find doses that Gand mediating the symptoms of Alzheimer’s disease (AD) were approximately half the threshold for inhibition of (1). Early studies found that AD-associated amyloid ␤-protein NMDAR-dependent synaptic plasticity (Fig. S1). Intracerebro- (A␤) promoted glutamatergic excitotoxicity. More recently A␤ ventricular injection of NVP-AAM077 (125 pmol, 129.5 Ϯ 4.3% was discovered to form soluble oligomers that rapidly and pre-HFS mean baseline EPSP amplitude Ϯ SEM, at 3 h post- potently disrupt glutamatergic synapses and plasticity mecha- HFS, n ϭ 5), ifenprodil (3 nmol, 133.9 Ϯ 5.3%, n ϭ 5) or UBP141 nisms underlying cognitive function, including long-term poten- (6.25 nmol, 133.8 Ϯ 6.5%, n ϭ 4) had no significant effect alone tiation (LTP), in the absence of cell death, providing an expla- on LTP induction (P Ͼ 0.05 compared with vehicle-injected nation for the cognitive deficits in AD (2–4). controls; P Ͻ 0.05 compared with baseline; two-way ANOVA Apart from anticholinesterases, memantine, a low-affinity with repeated measures and paired Student’s t tests) (Fig. 1). NMDA receptor (NMDAR) antagonist (5), is the only currently Importantly, using these relatively low doses, of the three approved treatment for clinical dementia of the Alzheimer type. ␤ compounds tested only the GluN2B-selective agent ifenprodil Although memantine can partially protect against A -mediated prevented the inhibition of LTP by soluble A␤ . In animals disruption of LTP at synapses that requires NMDAR activation 1–42 that were coinjected with ifenprodil and A␤1–42 (80 pmol, i.c.v.), for its induction, it also inhibits LTP over an overlapping dose the conditioning HFS induced LTP (125.7 Ϯ 6.5%, n ϭ 6, P Ͻ range, presumably because of a relatively poor discrimination 0.05 compared with baseline; P Ͻ 0.05 compared with A␤ between antagonism of physiological and disruptive NMDAR 1–42 alone, 102.1 Ϯ 2.2%, n ϭ 6) that was similar in magnitude to activation (6). Newer subtype selective NMDAR antagonists (7) vehicle-injected controls (133.1 Ϯ 5.5%, n ϭ 6; P Ͼ 0.05). In potentially could increase the dose range over which a beneficial contrast, coinjection of A␤ with the GluN2A-selective NVP- effect is obtained if the LTP-disrupting actions of A␤ and of 1–42 NMDAR antagonists are preferentially mediated by different NMDARs. Indeed the GluN2B (formerly known as NR2B or Author contributions: N.-W.H., I.K., R.A., and M.J.R. designed research; N.-W.H. and I.K. NMDA-R2B) (8) subunit has been implicated in regulating the performed research; and N.-W.H., I.K., R.A., and M.J.R. wrote the paper. actions and localization of A␤ oligomers, and A␤ oligomers have The authors declare no conflict of interest. been reported to promote endocytosis of GluN2B-containing This article is a PNAS Direct Submission. receptors (9–13), whereas both synaptic GluN2A- and GluN2B- 1To whom correspondence should be addressed. E-mail: [email protected]. containing NMDARs play key roles in LTP induction (14–17). This article contains supporting information online at www.pnas.org/cgi/content/full/ On the other hand, in cultured cells expressing cloned 0908083106/DCSupplemental. 20504–20509 ͉ PNAS ͉ December 1, 2009 ͉ vol. 106 ͉ no. 48 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0908083106 Fig. 2. Dose-dependence of the effects of subtype-selective NMDAR antag- onists on the inhbition of LTP by A␤1–42.(A) Neither pretreatment with the GluN2A antagonist NVP-AAM077 (125 pmol, n ϭ 5; and 250 pmol, n ϭ 4, i.c.v.) nor the GluN2C/D antagonist UBP141 (6.25, n ϭ 4; and 12.5 pmol, n ϭ 4, i.c.v.) significantly affected the inhibition of LTP by A␤1–42 (80 pmol, i.c.v., n ϭ 6 for A␤1–42 alone) (P Ͼ 0.05, one-way ANOVA). (B) In contrast, pretreatment with the GluN2B antagonist Ro 25–6981 (3 mg/kg, n ϭ 4; 6 mg/kg, n ϭ 6; and 12 mg/kg, n ϭ 4, i.p.) significantly (P Ͻ 0.05) reduced the A␤1–42-mediated inhibition of LTP (n ϭ 7 for A␤1–42 alone).
Recommended publications
  • Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
    International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL.
    [Show full text]
  • Citizen Cyborg.” Citizen a Groundbreaking Work of Social Commentary, Citizen Cyborg Artificial Intelligence, Nanotechnology, and Genetic Engineering —DR
    hughes (continued from front flap) $26.95 US ADVANCE PRAISE FOR ARTIFICIAL INTELLIGENCE NANOTECHNOLOGY GENETIC ENGINEERING MEDICAL ETHICS INVITRO FERTILIZATION STEM-CELL RESEARCH $37.95 CAN citizen LIFE EXTENSION GENETIC PATENTS HUMAN GENETIC ENGINEERING CLONING SEX SELECTION ASSISTED SUICIDE UNIVERSAL HEALTHCARE human genetic engineering, sex selection, drugs, and assisted In the next fifty years, life spans will extend well beyond a century. suicide—and concludes with a concrete political agenda for pro- cyborg Our senses and cognition will be enhanced. We will have greater technology progressives, including expanding and deepening control over our emotions and memory. Our bodies and brains “A challenging and provocative look at the intersection of human self-modification and human rights, reforming genetic patent laws, and providing SOCIETIES MUST RESPOND TO THE REDESIGNED HUMAN OF FUTURE WHY DEMOCRATIC will be surrounded by and merged with computer power. The limits political governance. Everyone wondering how society will be able to handle the coming citizen everyone with healthcare and a basic guaranteed income. of the human body will be transcended, as technologies such as possibilities of A.I. and genomics should read Citizen Cyborg.” citizen A groundbreaking work of social commentary, Citizen Cyborg artificial intelligence, nanotechnology, and genetic engineering —DR. GREGORY STOCK, author of Redesigning Humans illuminates the technologies that are pushing the boundaries of converge and accelerate. With them, we will redesign ourselves and humanness—and the debate that may determine the future of the our children into varieties of posthumanity. “A powerful indictment of the anti-rationalist attitudes that are dominating our national human race itself.
    [Show full text]
  • Addictions and the Brain
    9/18/2012 Addictions and the Brain TAAP Conference September 14, 2012 Acknowledgements • La Hacienda Treatment Center • American Society of Addiction Medicine • National Institute of Drug Abuse © 2012 La Hacienda Treatment Center. All rights reserved. 1 9/18/2012 Definition • A primary, progressive biochemical, psychosocial, genetically transmitted chronic disease of relapse who’s hallmarks are denial, loss of control and unmanageability. DSM IV Criteria for dependency: At least 3 of the 7 below 1. Withdrawal 2. Tolerance 3. The substance is taken in larger amounts or over a longer period than was intended. 4. There is a persistent desire or unsuccessful efforts to cut down or control substance use. 5. A great deal of time is spent in activities necessary to obtain the substance, use the substance, or recover from its effects. 6. Important social, occupational, or recreational activities are given up or reduced because of the substance use. 7. The substance use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by the substance. © 2012 La Hacienda Treatment Center. All rights reserved. 2 9/18/2012 Dispute between behavior and disease Present understanding of the Hypothalamus location of the disease hypothesis. © 2012 La Hacienda Treatment Center. All rights reserved. 3 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 4 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 5 9/18/2012 Dispute regarding behavior versus disease © 2012 La Hacienda Treatment Center. All rights reserved. 6 9/18/2012 © 2012 La Hacienda Treatment Center.
    [Show full text]
  • Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
    Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs.
    [Show full text]
  • “STOP” and “GO” Pathways for the Treatment of Alcohol Use Disorders
    UCSF UC San Francisco Previously Published Works Title Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Permalink https://escholarship.org/uc/item/6hd3x2cv Journal Psychopharmacology, 235(6) ISSN 0033-3158 Authors Ron, Dorit Berger, Anthony Publication Date 2018-06-01 DOI 10.1007/s00213-018-4882-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Psychopharmacology (2018) 235:1727–1743 https://doi.org/10.1007/s00213-018-4882-z REVIEW Targeting the intracellular signaling “STOP” and “GO” pathways for the treatment of alcohol use disorders Dorit Ron1 & Anthony Berger1 Received: 18 January 2018 /Accepted: 12 March 2018 /Published online: 14 April 2018 # The Author(s) 2018 Abstract In recent years, research has identified the molecular and neural substrates underlying the transition of moderate “social” con- sumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD. Keywords Alcohol . Addiction . Signaling . Translation . Medication Development . Fyn . mTOR . BDNF . GDNF Introduction medications such as naltrexone, acamprosate, and disulfiram not only are beneficial but also suffer from efficacy and com- Alcohol use disorder (AUD) is a serious worldwide health prob- pliance issues (Wackernah et al.
    [Show full text]
  • The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2005 The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement Thomas B. Morgan Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Mental and Social Health Commons, and the Psychology Commons Recommended Citation Morgan, Thomas B., "The Effects of Dextromethorphan on Response Acquisition with Delayed Reinforcement" (2005). Dissertations. 1050. https://scholarworks.wmich.edu/dissertations/1050 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE EFFECTS OF DEXTROMETHORPHAN ON RESPONSE ACQUISITION WITH DELAYED REINFORCEMENT by Thomas B. Morgan A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Psychology Western Michigan University Kalamazoo, Michigan June 2005 THE EFFECTS OF DEXTROMETHORPHAN ON RESPONSE ACQUISITION WITH DELAYED REINFORCEMENT Thomas B. Morgan, Ph. D. Western Michigan University, 2005 The current study examined in 2-h sessions the effects of intraperitoneal injec- tions of dextromethorphan (DM) (0.0, 40.0, 60.0, and 80.0 mg/kg) on the acquisition of lever-press responding in rats that were exposed to a two-lever procedure in which responses on the reinforcement lever (RL) were reinforced with food after a 15-s re- setting delay and responses on the cancellation lever cancelled a scheduled reinforcer.
    [Show full text]
  • A Steroid Modulatory Domain on NR2B Controls N-Methyl-D-Aspartate Receptor Proton Sensitivity
    A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity Ming-Kuei Jang†, Dale F. Mierke‡, Shelley J. Russek†, and David H. Farb†§ †Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118; and ‡Department of Molecular Pharmacology, Division of Biology and Medicine, and Department of Chemistry, Brown University, Providence, RI 02912 Edited by Erminio Costa, University of Illinois, Chicago, IL, and approved April 5, 2004 (received for review March 15, 2004) N-methyl-D-aspartate (NMDA) receptor function is modulated by have been shown to regulate native NMDA receptors via distinct several endogenous molecules, including zinc, polyamines, pro- recognition sites; PS modulation is also not dependent on the tons, and sulfated neurosteroids. Zinc, polyamines, and phenyleth- redox state of the receptor (24). To define the mode of action of anolamines exert their respective modulatory effects by exacer- PS and to determine structural components at the NMDA bating or relieving tonic proton inhibition. Here, we report that receptor that are critical for PS modulation, we took advantage pregnenolone sulfate (PS) uses a unique mechanism for enhance- of our previous finding that PS differentially modulates activity ment of NMDA receptor function that is independent of the proton of recombinant receptors containing different NR2 subunits sensor. We identify a steroid modulatory domain, SMD1, on the (25). PS potentiates the response of recombinant NMDA re- NMDA receptor NR2B subunit that is critical for both PS enhance- ceptors containing NR2A or NR2B subunits, while inhibiting the ment and proton sensitivity. This domain includes the J͞K helices response of receptors containing NR2C or NR2D subunits.
    [Show full text]
  • Memantine Increases NMDA Receptor Level in the Prefrontal Cortex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee Memantine increases NMDA receptor level in the prefrontal cortex but fails to reverse apomorphine-induced conditioned place preference in rats Ndlazi, Ziphozethu; Abboussi, Oualid; Mabandla, Musa; Daniels, Willie Published in: AIMS Neuroscience DOI: 10.3934/NEUROSCIENCE.2018.4.211 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Ndlazi, Z., Abboussi, O., Mabandla, M., & Daniels, W. (2018). Memantine increases NMDA receptor level in the prefrontal cortex but fails to reverse apomorphine-induced conditioned place preference in rats. AIMS Neuroscience, 5(4), 211-220. https://doi.org/10.3934/NEUROSCIENCE.2018.4.211 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • (200731) Hypromellose Phthalate (220824) Ibudilast
    21222122 Infrared Reference Spectra JP XVII Hypromellose Phthalate (200731) Hypromellose Phthalate (220824) Ibudilast The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21232123 Ibuprofen Ibuprofen Piconol Ifenprodil Tartrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21242124 Infrared Reference Spectra JP XVII Imidapril Hydrochloride Imipenem Hydrate Indapamide The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21252125 Indenolol Hydrochloride Indometacin Iohexol The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21262126 Infrared Reference Spectra JP XVII Iopamidol Iotalamic Acid Iotroxic Acid The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia.
    [Show full text]
  • Patient Information
    Patient Information Memantine Hydrochloride (me-MAN-teen HYE-droe-KLOR-ide) Tablets Read this Patient Information that comes with Memantine Hydrochloride Tablets before you start taking it and each time you get a refill. There may be new information. This information does not take the place of talking to your doctor about your medical condition or your treatment. What are Memantine Hydrochloride Tablets? Memantine Hydrochloride Tablets are a prescription medicine used for the treatment of moderate to severe dementia in people with Alzheimer's disease. Memantine Hydrochloride Tablets belongs to a class of medicines called NMDA (N-methyl-D-aspartate) inhibitors. It is not known if Memantine Hydrochloride Tablets are safe and effective in children. Who should not take Memantine Hydrochloride Tablets? Do not take Memantine Hydrochloride Tablets if you are allergic to memantine or any of the ingredients in Memantine Hydrochloride Tablets. See the end of this leaflet for a complete list of ingredients in Memantine Hydrochloride Tablets. What should I tell my doctor before taking Memantine Hydrochloride Tablets? Before you take Memantine Hydrochloride Tablets, tell your doctor if you: • have or have had seizures • have or have had problems passing urine • have or have had bladder or kidney problems • have liver problems • have any other medical conditions • are pregnant or plan to become pregnant. It is not known if Memantine Hydrochloride Tablets will harm your unborn baby. • are breastfeeding or plan to breastfeed. It is not known if memantine passes into your breast milk. You and your doctor should decide if you will take Memantine Hydrochloride Tablets or breastfeed.
    [Show full text]
  • Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION to ETHANOL and WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE
    University of Kentucky UKnowledge Theses and Dissertations--Psychology Psychology 2015 Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION TO ETHANOL AND WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE Anna R. Reynolds Univerity of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Reynolds, Anna R., "Gαq-ASSOCIATED SIGNALING PROMOTES NEUROADAPTATION TO ETHANOL AND WITHDRAWAL-ASSOCIATED HIPPOCAMPAL DAMAGE" (2015). Theses and Dissertations--Psychology. 74. https://uknowledge.uky.edu/psychology_etds/74 This Doctoral Dissertation is brought to you for free and open access by the Psychology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Psychology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Mapping the Binding Site of the Neuroprotectant Ifenprodil on NMDA Receptors
    The Journal of Neuroscience, July 15, 2002, 22(14):5955–5965 Mapping the Binding Site of the Neuroprotectant Ifenprodil on NMDA Receptors Florent Perin-Dureau, Julie Rachline, Jacques Neyton, and Pierre Paoletti Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 8544, Ecole Normale Supe´ rieure, 75005 Paris, France Ifenprodil is a noncompetitive antagonist of NMDA receptors control ifenprodil inhibition. Their location in a modeled three- highly selective for the NMDA receptor 2B (NR2B) subunit. It is dimensional structure suggests that ifenprodil binds in the cleft widely used as a pharmacological tool to discriminate sub- of the LIVBP-like domain of NR2B by a mechanism (Venus- populations of NMDA receptors, and derivatives are currently flytrap) resembling that of the binding of Zn on the LIVBP-like being developed as candidate neuroprotectants. Despite nu- domain of NR2A. These results reinforce the proposal that the merous studies on the mechanism of action of ifenprodil on LIVBP-like domains of NMDA receptors, and possibly of other NMDA receptors, the structural determinants responsible for ionotropic glutamate receptors, bind modulatory ligands. More- the subunit selectivity have not been identified. By combining over, they identify the LIVBP-like domain of the NR2B subunit functional studies on recombinant NMDA receptors and bio- as a promising therapeutic target and provide a framework for chemical studies on isolated domains, we now show that ifen- designing structurally novel NR2B-selective
    [Show full text]