Congratulation on Your Purchase of E3's Diamondfire 6CDI Digital

Total Page:16

File Type:pdf, Size:1020Kb

Congratulation on Your Purchase of E3's Diamondfire 6CDI Digital Congratulation on your purchase of E3’s DiamondFIRE 6CDI Digital Capacitive Discharge Ignition Box. Contained in this package you should find the following contents: One (1) 6CDI ignition control box One (1) Main harness One (1) Magnetic pickup harness One (1) GM HEI harness One (1) Hardware and mounting kit One (1) Set of anti-vibration mounts WARNING: During any electrical system installation, always disconnect both battery cables, removing the negative cable first. DIGITAL OPERTATION The E3 6CDI uses a high speed microprocessor to control the functionality of the box. This microprocessor constantly analyzes the input signals and makes extremely fast calculation for voltage, multi-spark and RPM limit. The control box has been designed with protection from EMI/RFI (static noise and interference). Important Note: Do not use solid core spark plug wires. We recommend E3 DiamondFIRE Spark Plug Wires only. Important Note: Do not use digital or dial back timing lights. HOW CAPACITIVE DISCHARGE WORKS With a factory stock inductive ignition system, the coil must store and step up the voltage in between each firing event. At higher RPM levels there is less time to fully charge the coil. The voltage then falls short of reaching maximum energy which results in a loss of power or top end miss. The 6CDI is a capacitive discharge design that features a capacitor which is quickly charged with 500 - 550 volts and stores it until the appropriate time. With a CD ignition system, the input voltage to the coil is always at full power no matter what RPM level. MULTIPLE SPARKS The 6CDI produces multi-sparks for each firing of the spark plug at lower RPM levels for easier starting, improved throttle response and efficiency. The number of multi-sparks that occurs decrease as RPM increases. The series of multi- sparks always occurs for 20° of crankshaft rotation. Above 3,000 RPM there is simply not enough time to fully recharge the capacitor to fire the spark plug more than once. PROTECTION The 6CDI has built-in reverse polarity protection. This helps to protect the control box in the event of wrong power supply connection at the battery. REV LIMITER The 6CDI features a built-in rev limiting control that provides a smooth and accurate rev limit by dropping the spark to individual cylinders. The RPM limit is adjustable in 100 rpm increments via rotary switches on the end plate of the control box. CYLINDER SELECT The 6CDI features a cylinder select via a rotary switch on the end plate of the control box . P a g e | 1 GENERAL INFORMATION BATTERY The E3 DiamondFIRE 6CDI is designed for a negative ground, 12 volt electrical system and an engine equipped with a distributor. The 6CDI can be used with 16 volt batteries in a total lost charging system (no alternator). The digital circuitry will automatically compensate for voltage supplies of 9 - 18 volts while maintaining full output. Do NOT run the engine while the charger is hooked up to the 16 volt battery. The control box can be damage if more than 18 volts is applied to the heavy gauge Red lead. Be very careful when jump starting the vehicle as attaching the jumper cable incorrectly can result in a 24 voltage system. Make sure the voltage electronic regulator is working correctly. Do NOT use this ignition control box on a vehicle with a mechanical voltage regulator. If you are not running an alternator, allow at least 15 amp/hour for every half hour of operation. The 6CDI uses about 0.8 Amps for every 1,000 RPM. If the 6 Series Digital Ignition is using the same battery as the starter or other electrical system loads such as an electric fuel or electric water pump, the amp/hour rating of the battery should be higher. COILS The 6CDI can be used with most stock and aftermarket electronic ignition coils with a primary resistance of less than 0.7 Ohms. It cannot be used with a points style ignition coil nor can it be used with a ballast resistor. For maximum performance, you must use the DiamondFIRE High Output CD Coil part #E3.1451 in conjunction with the 6CDI. Do not use an ignition coil that had been designed for a drag race 7 Series ignition system . Make sure that the primary inductance of the CD ignition coil is 3 to 7 milli Herny’s – check with the coil manufacture if necessary. No wires other than the Black (coil -) and Orange (coil +) leads can be connected to the CD coils terminals. TACHOMETERS The 6CDI has a gray colored Tach Output wire that provides a trigger signal for tachometers, a shift light or other add- on rpm activated devices. The Tach Output wire produces a 12 volt square wave signal with a 22.5° duty cycle. Some vehicles with factory tachometers may require a Tach Adapter to operate with the 6 Series Digital Ignition. If your GM vehicle has an in-line filter it may cause the tachometer to drop to zero on acceleration. If this occurs, bypass the filter. SPARK PLUGS AND WIRES Spark plug wires are very important to the overall operation of your ignition system. A high quality, spiral wound spark plug wire and proper routing are required to get the best performance from your ignition. Spiral core wires, such as E3’s DiamondFIRE Spark Plug Wires, provide a good path for the spark to follow while minimizing Electro Magnetic Interference (EMI). Solid Core spark plug wires cannot be used with the 6CDI. Routing: Correct routing of the spark plug wires is also very important. Spark plug wires should be routed away from sharp edges and engine heat sources. If there are two spark plug wires that are next to each other on the engine and in the engine’s firing order, those spark plug wires must be routed away from each other to avoid inducing a spark into the other wire. For example, in a Chevy V8, the firing order is 1-8-4-3-6-5-7-2. The #5 and #7 cylinders are next to each other in the engine and in the firing order. The voltage from the #5 wire can induce a spark into #7 which will result in detonation and cause engine damage. Spark Plugs: The correct spark plug type, reach and heat range is important when maximizing the performance of your engine. Visit www.e3sparkplugs.com to find the right plug for your application. Welding: To avoid damaging the 6CDI, always disconnect both battery positive and negative wires as well as the tachometer ground wire when welding on the vehicle. Distributor Cap and Rotor: You should install a new distributor cap and rotor when installing the 6 Series Digital Ignition. The distributor cap and rotor should be clean inside and out especially the terminals and rotor tip. A vented style distributor cap is best when using the 6CDI. This reduces the possibility of the air inside the cap from being electrically charged resulting in misfire due to crossfire. E3 manufactures a complete line of racing distributors. Visit www.e3sparkplugs.com for more information. P a g e | 2 MOUNTING The 6CDI can be mounted in the engine compartment as long as it is away from direct engine heat sources. It is not recommended that the control box be mounted it in an enclosed area such as the glove box. Once a suitable location is found, make sure the harness lead wires can reach their connections. Also be sure that the rev limiter rotary program dials can be accessed. Hold the control box in place and mark the location of the mounting holes. Use a 3/16" drill bit to drill holes, install the vibration mounts and mount the control box. WIRING The 6CDI uses a plug-in main wiring harness that connects to the ignition through a locking sealed Delphi header connector. Power Leads: These are the two heavy 12 gauge wires used to connect directly to the battery. The ignition is load protected from reverse battery connections Heavy Red: Connector directly to the battery positive (+) terminal or a positive battery junction such as the starter solenoid. Do not connect to the alternator. Heavy Black: Connects to a good ground, either at the battery negative (-) terminal or to the engine block. Make sure that an engine ground strap is in place. Red: Connect to a switched 12 volt source such as the ignition key or switch. This turns the 6CDI control box on and off. Maximum current draw is 0.25 mA. Orange: Connects to the ignition coil positive (+) terminal. This is the ONLY wire that makes contact with the positive coil terminal. Black: Connects to the ignition coil positive (-) terminal. This is the ONLY wire that makes contact with the negative coil terminal. TRIGGER WIRES: Two different circuits can be used to trigger the 6CDI, the points circuit (the white wire) or the Magnetic Pickup circuit (the Green and Purple wires). Only one circuit can be used at a time. White: Connect to the break points or electronic ignition module switched output. When this wire is used, the Magnetic pickup connector is not used. Green & Purple: These wires are routed together in one harness as the magnetic pickup connector. The connector plugs directly into a distributor or crank trigger as well as aftermarket pickup. The Green wire is the negative (-) and the purple wire is the positive (+). When the magnetic pick harness is used the white wire is not used. ACCESSORIES: Gray: Tachometer output lead connects to the tachometer trigger wire or any other RPM activated devices.
Recommended publications
  • Automotive Mechanics Curriculum Outline for Secondary Schools
    DOCUMENT RESUME ED 211 716 CE 030 974 TITLi\ Automotive Mechanics Curriculum Outline for Secondary Schools. Vocational Education CurriculumGuide. INSTITUTION Louisiana State Dept. of Education, Baton Rouge.Div. \N of Vocational Education. SPONS AGENCY. Department of kducation, Washington, D.C. REPORT NO Bull-1637 PUB DATE 1 Aug 81 NOTE 25p. EDRSPRICE MF01/Pr3l Plus Postage. DESCRIPTORS Articulation (Education); *Auto Mechanics; *Course Descriptions; Curriculum; Educational Resources; Secondary Education; State Curriculum Guides; Textbooks; *Voc-ational Education IDENTIFIERS Louisiana ABSTRACT This curriculum outline for secondary automotive mechanics is structured aroundLouisiana's*Vocational-Technical Automotive Mechanics Curriculum. The curriculumis composed of 16 units of instruction, covering the followingtopics: benchwork, fundamentals of automotive engines, preventivemaintenance, automotive brakes, steering and frontsuspinsion, drive train and /rear suspension, manual;transmissions, automatic transmissions, fuel systems, accessories, completeautomotive service, welding, and mathematics. The outline lists the instructionalunits to be taught for each year of a four-year secondaryautomotive mechanics 'Diagram' for either two -hour block or three-hourblock courses. The curriculum outline also describes the curriculum andlist's related study assignments and job sheets that are to be usedwith each unit. In addition, a list of required texts and resourcematerials is included. The curriculum outline Was prepared toprovide continuity between
    [Show full text]
  • Technology and Future Trends
    \ DOT-HS-807-068 Automotive Displays and DOT-TSC-NHTSA-86-4 Controls- Existing Technology and Future Trends M.A. Esterberg E. 0. Sussman R. A. Walter Transportation Systems Center Cambridge, MA 02142 November 1987 Final Report This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 © US Departmentof Transportation National HighwayTraffic Safety Administration Office of Research and Development, and Office of Crash Avoidance Research Washington D.C. 20590 \ NOTICE This document is disseminated under the sponsorship ofthe Department ofTransportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. NOTICE The United States Government does notendorse products or manufacturers. Tradeor manufacturers' names appear herein solely because they are considered essential to the object ofthe report. All copyright material has been verified and approved for publication. •\ Technical Report Documentation Pago 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT-HS-807-068 4. Title and Subtitle S. Report Oate AUTOMOTIVE DISPLAYS AND CONTROLS - EXISTING November 1987 TECHNOLOGY AND FUTURE TRENDS 6. Performing Organization Code TSC-DTS-45 8. Performing Organization Report No. 7. Author'i) M.A. Esterberg, E.D. Sussman, and R.A. Walter DOT-TSC-NHTSA-86-4 9. Performing Organisation Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation HS702/S7Q17 Research and Special Programs Administration 11. Contract or Grant No Transportation Systems Center Cambridge, MA 02142 13. Typo of Report and Period Covered 12. Sponsoring Agency Name and Address U.S. Department of Transportation Final Report National Highway Traffic Safety Administration Jan.
    [Show full text]
  • Installation Instructions
    120300 PRECAUTIONS: Rev 2: 12/3/18 Read ALL instructions before installing instrument. Follow ALL safety precautions when working on vehicle-wear safety glasses! ALWAYS disconnect (-) negative battery cable before making electrical connections. HELP?: If after reading these instructions you don’t fully understand how to install your instrument(s), contact your local Stewart Warner distributor, or contact our Technical Support Team toll free at 1-800-676-1837 Additional applications information may be found at www.stewartwarner.com. GENERAL APPLICATION: Installation Instructions 12-volt DC negative (-) ground electrical systems (11-20 VDC Tachometer 3-3/8” operating voltage range for the speedometer, 11-16 VDC for the Light bulb). 1 2 TACHOMETER MOUNTING (Figure 1): TACHOMETER WIRING (Figure 2): Recommended panel cut-out (hole size) for 3-3/8” tachometer 1. Disconnect negative (-) battery cable. is 3-3/8”. 2. Using 18-ga. wire, connect the (NEG) terminal to a clean Secure the tachometer in the hole using the supplied bracket (rust/paint-free) ground, preferably battery negative terminal. and nuts. Be sure to wire the tachometer before mounting. 3. Using 18-ga. wire, connect the (POS) terminal to a switched +12V source, like the ignition wire. 4. Using 18-ga. wire, connect the (SIG) terminal to the coil negative or the tachometer terminal of the ignition module. Figure 1 5. There are two (2) wires for the lighting; Connect the (WHITE) lighting wire to the dash lighting circuit or to a +12V switched circuit. Connect the (BLACK) lighting wire to a chassis ground. 6. Calibrate the pulses per revolution (PPR).
    [Show full text]
  • Tachometer Installation Instructions
    INFORMACION SOBRE SERVICIO DE VE- GARANTIA COMPLETA POR this unit may also be needed. As the mounting TACHOMETER configu ration will vary significantly from vehi- HICULOS UN (1) AÑO cle to vehicle, hardware to mount the tachom- (NO VALIDA EN MEXICO) INSTALLATION eter to the vehicle is not included. Whether Se incluye a continuación la lista de los editores que cuentan con manuales de you use self tapping or a ma chine screw and servicio para su vehículo específico. Escríbales o llámelos para consultar acerca de Bosch Automotive Service Solutions, 3000 nut configuration, #8 hardware including flat disponibilidad y precios, especificando la marca, estilo, año del llámeles modelo y Apollo Drive, Brook Park, Ohio 44142, Estados INSTRUCTIONS and lockwashers is recommended. Número de Identificación de Vehículo de EUA (VIN) de su vehículo. Unidos de América, garantiza al usuario GENERAL INFORMATION que esta unidad estará libre de defectos en Please read this instruction manual and MANUALES DE SERVICIO DE VEHICULOS DE LOS FAB- materiales y mano de obra por un período de un (1) año a partir de la fecha de la compra review the installation procedures care fully CAUTION original. Toda unidad que falle dentro de before attempting the installation of your RICANTES DE EQUIPO ORIGINAL (PARA EUA) This unit is designed for use on twelve este período será reparada o reemplazada a tachometer. (12) volt negative (-) ground four (4) Manuales de Ser- Manuales de Servicio Manuales de Servicio criterio de Bosch y sin cargo alguno, cuando se devuelva a la fábrica. Bosch solicita que NOTE cycle automotive type engines.
    [Show full text]
  • 118799 USL with RPM Switch
    118799 SHIFT-LIGHT MOUNTING: Rev 1: 10/10/04 The Ultra-Shift Light may be mounted on a roll cage, steering column, dash, or other locations of high visibility. To mount the Ultra-Shift Light, use the bracket and screws provided, or secure using a hose clamp. Installation Instructions To mount on an existing tachometer, loosen the mounting strap and Ultra-Shift Light With RPM Activated Window Switch insert the base of the Ultra-Shift Light bracket under strap and PRECAUTIONS: retighten the mounting strap. Read ALL instructions before installing instrument. SHIFT-LIGHT WIRING (FIGURE 1): Follow ALL safety precautions when working on vehicle-wear safety 1. Disconnect negative (-) battery cable. glasses! 2. Using 18-ga. wire, connect the (BLACK) wire to a clean (rust/paint- ALWAYS disconnect (-) negative battery cable before making free) ground, preferably battery negative terminal. electrical connections. 3. Using 18-ga. wire, connect the (RED) wire to a switched +12V HELP?: source, like the ignition wire. If after reading these instructions you don’t fully understand how to 4. Using 18-ga. wire, connect the (GREEN) wire the coil negative or install your instrument(s), contact your local Stewart Warner the tachometer terminal of the ignition module. distributor, or contact our Technical Support Team toll free at 5. Using 18-ga. wire, connect the (WHITE) wire to the relay coil 1 866-797-7223 (SWP-RACE). negative. This wire will supply the ground (1 amp maximum) to Visit www.SW-Performance.com for additional information. energize the relay and activate the desired device. GENERAL APPLICATION: NOTE: The (WHITE) wire provides an output (switched to ground) 12-volt DC negative (-) ground electrical systems (11-20 VDC whenever the engine RPM is between the programmable L0 and HI operating voltage range).
    [Show full text]
  • ONEGAUGE TACHOMETER SETUP and TROUBLESHOOTING to Contact Us: [email protected]
    ONEGAUGE TACHOMETER SETUP AND TROUBLESHOOTING to contact us: [email protected] IMPORTANT NOTE: It is the user’s responsibility to select the correct tachometer setup for their vehicle and do any testing required BEFORE ordering from OneGauge. OneGauge will not provide refunds for improperly selected tachometer setups. Warranty only covers defective tachometer modules when ordered from OneGauge. As with all OneGauge products, OneGauge is not responsible for any damage or harm to person or vehicle when installing or operating a OneGauge product. ------------------------------------------------------------------------------------------------------------------------------------------ The tachometer is likely our most troublesome sensor. First of all, please don’t expect the tachometer to work right out of the box. Due to the huge variety of types of tachometers, there’s not really a one-size- fits-all solution. For many customers, it takes a few adjustments to get the signal to work correctly with the OneGauge hub. However, we want to help make the process as easy as possible, so the instructions below should help you get a working setup. 1. What is the source of your tachometer? You’ll first need to determine where your tach signal will come from. These differ for gasoline and diesel engines. Gasoline engines: • Coil driven tachometer • Low-voltage signal from a distributor box (MSD, etc) or the ECU itself (LS engines often include a tach signal wire) • HEI distributor signal • Coil on Plug Diesel Engines • Stock flywheel, balancer, or other tachometer sensor • Alternator terminal connection (often the “W” terminal, if available) • Aftermarket alternator tachometer pickup • Custom magnetic or optical sensor, often mounted on your flywheel, balancer, or other part that rotates predictable with the crankshaft 2.
    [Show full text]
  • Mercury Smartcraft Operations Manual
    Operation Manual THIS MANUAL DESCRIBES THE SMARTCRAFT GAUGE SYSTEMS AVAILABLE FOR YOUR BOAT 2001, Mercury Marine 90-10229021 501 0 PRODUCT IDENTIFICATION For boats equipped with SmartCraft gauge systems, look to the descriptions below to identify the system in the boat. Please read about the SmartCraft system to get the best per- formance from them. Part 1 Monitor Monitor MONITOR 1.01-1.02 Software Version 1.01 & 1.02 Software Version 2.00 NOTE: Software version will NOTE: Software version will flash on screen at start up flash on screen at start up Part 2 Part 1 Part 2 MONITOR 2.00 System Tachometer and Speedometer Note: Look for RESET and Brightness arrows Part 3 Part 3 SYSTEM TACH & SPEED TACH SYSTEM Smart Tachometer and Speedometer NOTE: Look for letters “VDO” VDO Part 4 Part 4 & SPEED TACH SMART 1 2 MONITOR 1.01-1.02 Part 1 Monitor with Software Version 1.01 and 1.02 Legend. 1-1 Basic Operation. 1-2 Standard Information Display Screens. 1-3 Shallow Water Alarm. 1-6 Warning System. 1-7 Warning Display Screens. 1-7 CAL 1 Calibration. 1-9 CAL 2 Calibration. 1-12 NOTE:This manual shows all the Monitor display screens that are available. Depending on your type of engine, not all these screens will apply. Monitor with Software Version 1.01 and 1.02 is compatible with: 2001 model year and newer Mercury Outboard mod- els that are designed for use with SmartCraft. MONITOR 1.01-1.02 1-0 MONITOR – VERSION 1.01-1.02 Legend A = L = B = N = MONITOR 1.01-1.02 C = O = D = P = E = S = F = T= I = U= = Engine = Fuel = Water Temperature = Water Pressure = Oil = Alarm 1-1 MONITOR – VERSION 1.01-1.02 Basic Operation This monitor is an LCD multi-function display gauge.
    [Show full text]
  • Carburetor Synchronizing & Idle Mixture Adjustment
    CARBURETOR SYNCHRONIZING & IDLE MIXTURE ADJUSTMENT FOR 00-5746-0 & 43-5712-0 PROCEDURE 1. Remove the air filter assemblies. 2. Disconnect the throttle linkage rods on ALL carburetors. 3. Turn "out" (counter clock-wise) the idle speed screw, on each carburetor, until the tip of the screw is flush with the casting. Check for binding or sticking of the throttle plates. With the idle speed screw in this position, the throttle plates should be completely closed in the bores. Correct any misalignment or binding BEFORE proceeding. 4. Turn "in" (clockwise) the idle speed screw, on each carburetor, until the tip of the screw just touches the carburetor lever. From this "contact" position, turn each idle speed screw exactly one (1) full turn "in". This is your preliminary set point. 5. Start the engine. CAUTION: Be sure the loose throttle-rods are not interfering with other linkage components. 7. To synchronize the carburetors, adjust each idle speed screw until a balanced airflow reading is obtained on the Syncrometer. 8. After the carburetors are synchronized, reinstall the linkage rods. If the linkage rod length is not correct the throttle lever position will be affected. To adjust linkage rod length loosen the right and left handed nuts and turn the rod shaft to shorten or lengthen the rod as necessary. NOTE: When linkage rods are properly adjusted the Syncrometer reading will remain as originally set. When rods are adjusted, lock the rod nuts in place. 9. If idle mixture and idle speed adjustments are not required, turn engine off and remove syncrometer. Replace air filter assemblies and this procedure is complete.
    [Show full text]
  • Model 3800 Tachometer Tester
    Model 3800 Tachometer Tester Product Description The King Nutronics Model 3800 is a compact, lightweight and quiet tachometer tester designed specifically for calibrating and troubleshsooting aircraft and helicopter tachometer indicators and generator/ alternator systems on the flight line and in the workshop. The Model 3800 exceeds current U.S. Navy specifications. The Model 3800 is accurate to within ±0.02% of the set point value throughout its operating range of 1 through 6,500 RPM in 1 RPM increments. Calibration can be performed in the clockwise or counter-clockwise directions using RPM units, or as a percentage of full scale from 1% to 120% (42 to 5040 RPM) in 1% increments for jet engine tachometers. Features Needle fluctuations and erratic readings are quickly isolated using the manual Adjust mode. • Calibrates 2 and 4-pole generators, as well as RPM and % indi- The AND 20005 drive pad allows the unit to be cators used with all standard aircraft tachometer gener- • Calibrates optical tachometers from 500 to 65,000 RPM with ators and alternators. the (optional) Optical Tachomete Kit Simple, intuitive front panel controls make • Calibrates jet engine tachometers as percentage of full scale tachometer testing efficient and convenient and from 1% to 120% shorten the learning curve for inexperienced • Calibrates electrical and cable-driven tachometers operators. • Accurate to within ±0.02% of set point value Target speeds and system status information are • Normal operating range from 1 to 6,500 RPM available at a glance on the vacuum fluorescent • Intuitive front panel controls for efficient testing front panel display. • Manual Adjust mode for easy tachometer troubleshooting A standard SAE cable adapter is included with • Standard AND 20005 drive pad the test set for convenient testing of cable-driven tachometers.
    [Show full text]
  • Continental Engine Specifications for A65 Series 8, 8J, 8F, 8FJ (Pdf)
    Page No. 1 of 12 pages Spec. No. 1009a January 10, 1946 Superceding Spec. 1009 February 23, 1940 Rev. 10-28-42 DETAIL SPECIFICATION For ENGINE, AIRCRAFT CONTINENTAL (Mfrs. Model A65 Series 8, 8J, 8F, 8FJ CONTINENTAL MOTORS CORPORATION MUSKEGON, MICHIGAN This document is an uncertified copy of the original Continental Detail Specification, and is provided for the convenience of M-18 owners by The Mooney Mite Site. Page No. 2 of 12 pages Spec. No. 1009a CONTINENTAL ENGINE SPECIFICATIONS FOR MODEL A65 The engine warranty is subject to cancellation if the engine installation does not conform with the minimum requirements of these specifications. A. GENERAL SPECIFICATIONS The following Continental Motors Corporation drawings and engine power curves form a part of this specification: Drawing No. A50381 Outline Assembly, Model A65 Series 8, 8J, 8F, 8FJ. * Drawing No. A6445 Sectional Assembly, Model A65 Series 8 * Curve Sheet 1009-1 Power Curve, A65 Curve Sheet 1009-3 Altitude Performance Curve * * not yet available [see page 10] B. TYPE B-1. This specification covers the requirements for the Continental A65 engines. B-2. The Continental A65 engines are of the four-cylinder, overhead valve, air-cooled, horizontally opposed, direct drive type of gasoline engine which operates on the four stroke Otto cycle. The cylinders have down directed exhaust outlets. B-3. The series numbers of the A65 engine model are listed in Section D. C. DETAIL REQUIREMENTS C-1. Ratings: Model A65 engine is rated at 65 H.P. at 2300 r.p.m. at sea level, using 73 minimum octane aviation gasoline.
    [Show full text]
  • 600 Sprint Universal Rules Technical Inspection Items to Be Checked • Rev Limiter: Engines Rpm's Cannot Exceed the Factory
    600 Sprint Universal Rules Technical Inspection Items to be checked Rev Limiter: Engines rpm’s cannot exceed the factory stock limit by more than 50 RPM’s o Identify engine make and year of engine to determine maximum rpm, reference picture manual. o Connect Stewart Warner tachometer to standard connector on competitors engine harness (see separate document on how to operate the tach). This is a three wire connector that will either have a plug cap on it or it will be hooked up to the cars internal tachometer. If it is hooked up to an existing tachometer, unhook it and connect the official tach. o If the competitor does not have a connector it is up to the track to either hook up a temporary connector or disqualify the competitor. o It is up to the competitor to either rev engine up to hit limiter in the pits sitting still, or go out on the track in one less gear than the race gear. Either way the engine must be accelerated to hit the rev limiter. o Press recall on the tachometer to view highest rpm reached. If the recalled RPM is more than 50 over the stock factory rpm limit, it is determined the ECU is not set to factory settings and will be disqualified Displacement: 06 or newer engine model year cannot exceed 600cc. All older engines cannot exceed 637cc. See list to determine the maximum displacement of the engine. o Remove right side crank case cover so the engine can be turned over. o Remove cylinder #1 spark plug o Find cylinder #1 bottom dead center.
    [Show full text]
  • Technical Info
    ENGINE (4G6) – GENERAL 1-1 SECTION 1 ENGINE CONTENTS Engine (4G6)............................................1-1 Fuel System.............................................1-7 General information................................1-1 1. Fuel tank ........................................................1-8 1. Major specifications .......................................1-1 Control System.......................................1-9 2. Engine Performance Curve ...........................1-2 1. Fuel injection control ....................................1-11 Base Engine ............................................1-2 2. Idle speed control.........................................1-11 1. Timing belt cover............................................1-2 3. Ignition timing and distribution 2. Piston.............................................................1-3 control..........................................................1-12 3. Valve spring ...................................................1-3 4. Other controls ..............................................1-12 4. Delivery pipe ..................................................1-4 5. Diagnosis system.........................................1-12 Cooling Equipment.................................1-5 Emission Control System ....................1-13 Intake and Exhaust Equipment .............1-5 Mount .....................................................1-14 1. Air intake system............................................1-5 Engine (4G6) General information The 4G63-T/C engine of the Lancer Evolution-VIII
    [Show full text]