Quasitoric Manifolds and Cobordism Theory

Total Page:16

File Type:pdf, Size:1020Kb

Quasitoric Manifolds and Cobordism Theory QUASITORIC MANIFOLDS AND COBORDISM THEORY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2008 Craig Matthew Laughton School of Mathematics Contents Abstract 4 Declaration 5 Copyright Statement 6 Acknowledgements 7 1 Introduction 8 2 Notation and prerequisites 13 2.1 Nomenclature . 13 2.2 Oriented cohomology theories . 14 2.3 Tangential structures . 18 2.3.1 Stably complex structures . 19 2.3.2 Special unitary & stably quaternionic structures . 19 2.3.3 Tangential structures on sphere bundles . 20 2.3.4 Changes of tangential structure . 21 2.4 The Borel construction . 25 2.5 Iterated bundle constructions . 26 3 Quasitoric manifolds 31 3.1 Torus actions and simple polytopes . 31 3.2 Quasitoric manifolds . 34 3.3 Cohomology of quasitoric manifolds . 38 2 3.4 Tangential structures . 40 4 Dobrinskaya towers 44 4.1 Constructing the towers . 44 4.2 Cohomology of Dobrinskaya towers . 50 4.3 Stably complex structure . 51 4.4 Dobrinskaya towers as iterated bundles . 52 4.5 Special cases . 55 5 Quasitoric manifolds with SU-structure 58 5.1 Reducible quasitoric manifolds . 61 5.2 Encoding omniorientations in Λ . 72 5.3 Chern classes . 73 5.4 Characteristic numbers . 75 5.5 Complex projective space . 77 6 Quaternionic towers 85 6.1 Quaternionic line bundles . 86 6.2 Constructing the towers . 90 6.3 Special cases . 92 6.4 Quaternionic quasitoric manifolds . 94 7 Quaternionic towers and cobordism theory 99 7.1 Torsion in MSp∗ ............................. 100 7.2 The manifolds Y 4n+1 ........................... 104 7.3 Tangential structures . 110 7.4 Associated units . 120 7.5 Fundamental classes . 126 7.6 Determination of Ψ(Y 4n+1)........................ 128 Bibliography 135 Word count 37,234 3 The University of Manchester Craig Matthew Laughton Doctor of Philosophy Quasitoric Manifolds and Cobordism Theory July 29, 2008 Our aim is to investigate quasitoric manifolds, and their quaternionic analogues, in the setting of cobordism theory. A quasitoric manifold is said to be reducible if it can be viewed as the total space of an equivariant bundle with quasitoric fibre and quasitoric base space. Buchstaber, Panov and Ray have conjectured that any quasitoric SU-manifold is a boundary in the complex cobordism ring. We prove this conjecture for complex projective space CP n, and for reducible quasitoric manifolds with fibre CP 1. We introduce the notion of a quaternionic tower, as the quaternionic analogue of a certain family of quasitoric manifolds known as Dobrinskaya towers. We com- pute their F -cohomology ring for a quaternionic oriented ring spectrum F , and the properties of various subfamilies are investigated. Approaches to placing the towers within a quaternionic analogue of the theory of toric topology are considered. We undertake a study of one particular subfamily of quaternionic tower in the quaternionic cobordism ring MSp∗. This allows us to construct a new set of man- ifolds, and by studying their possible stably quaternionic structures, we prove that they are simply-connected geometric representatives for an important class of torsion elements in MSp∗. 4 Declaration No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. 5 Copyright Statement i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and s/he has given The University of Manchester the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes. ii. Copies of this thesis, either in full or in extracts, may be made only in accor- dance with the regulations of the John Rylands University Library of Manch- ester. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made. iii. The ownership of any patents, designs, trade marks and any and all other intellectual property rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions. iv. Further information on the conditions under which disclosure, publication and exploitation of this thesis, the Copyright and any Intellectual Property Rights and/or Reproductions described in it may take place is available from the Head of the School of Mathematics. 6 Acknowledgements I would like to thank my supervisor, Nige Ray, who first encouraged me to pursue my interest in maths when I was an undergraduate at Manchester; his expertise and guidance have since proved invaluable throughout my PhD. Many other mathemati- cians have also imparted plenty of advice and topological wisdom to me over the past four years, in particular, I should thank Tony Bahri, Victor Buchstaber and Reg Wood. I must acknowledge the assistance of my former officemates, Dave, Adrian, Goran and Mark, who all unfailingly came to my rescue whenever I was struggling at the beginning of my PhD. Indeed I am grateful to all my officemates over the years, especially Hadi and Jerry, for their support and friendship. I would also like to express my gratitude to my parents, for all their encouragement throughout my time at university. Finally, my thanks go to Annie, whose determination to overcome much greater difficulties than any I have suffered has been a huge inspiration to me. Without her love and support, I would not have come this far. 7 Chapter 1 Introduction Toric topology encompasses the study of topological spaces that admit well-behaved torus actions. The subject was initiated by the work of Davis and Januskiewicz [16], who introduced the notion of a quasitoric manifold as the topological analogue of a construction in algebraic geometry. In the fifteen years since their pioneering paper, the subject has rapidly flourished, and links between more established areas of topology have begun to be forged. One of the first applications of toric topology was to the theory of complex cobor- dism, the study of which stretches far back into twentieth century mathematics; for instance, the coefficient ring MU∗ of complex cobordism was first determined by Mil- nor [37] and Novikov [40] in the early sixties. Quasitoric manifolds M are amenable to the methods of complex cobordism because once M and certain of its submanifolds are oriented in a particular manner, M is furnished with a canonical stably complex structure. This fact allowed Buchstaber and Ray [9] to fabricate an alternative basis for MU∗ using quasitoric manifolds. Their work led to a solution to the topological analogue of a long standing problem in algebraic geometry, first posed by Hirzebruch in 1958 (see e.g. [5, Section 5.3]). Our thesis continues the study of quasitoric manifolds in complex cobordism the- ory. Buchstaber, Panov and Ray [7] have conjectured that every quasitoric manifold with an SU-structure is a boundary in the complex cobordism ring, and it is this problem which we investigate for complex projective space CP n, and for the class of 8 CHAPTER 1. INTRODUCTION 9 reducible quasitoric manifolds introduced by Dobrinskaya [17]. A quasitoric manifold M 2n is said to be reducible if it can be viewed as the total space of an equivariant bundle, with quasitoric fibres and quasitoric base space. In the second half of our thesis, we consider the effect of replacing the complex numbers by the quaternions in some of the constructions of toric topology. In par- ticular, we study a quaternionic analogue of a family of quasitoric manifolds known as Dobrinskaya towers. The seemingly innocuous fact that the quaternions do not commute throws up many obstacles, but the quaternionic viewpoint does allow us to construct a collection of quaternionic towers with interesting applications in quater- nionic cobordism theory. As in the case of complex cobordism, the coefficient rings of the other clas- sical cobordism theories MG∗(−), which arise from the Thom spectra MG, for G = O, SO, SU, Spin, have long been understood (see e.g. [54]). In contrast, the coefficient ring MSp∗ of quaternionic cobordism, remains something of an enigma. In the past thirty years there have been several attempts to compute this ring. Gargantuan calculations with spectral sequences that converge to MSp∗ were un- dertaken by Kochman [30] and Vershinin [58], while more recent efforts utilised the transfer map [4], and the theory of cobordism with singularities [59]. Though these approaches offered many new insights into the structure of MSp∗, a full description of the ring is still lacking. However, it is clear that a collection of elements ϕm ∈ MSp8m−3 defined by Ray in [42], play a crucial role in MSp∗. The ϕm are multiplicatively indecomposable elements of order 2, and they have been the starting point for all of the investigations described above. Finding geometrical representatives for elements in MSp∗ is a key problem. Once we have obtained such representatives, we would hope that we can gain further infor- mation about the cobordism ring, which would have remained hidden, or been harder to obtain by using purely algebraic methods. Ray went on to realise the torsion elements ϕm geometrically in [47], with the aid of a special subfamily of quaternionic tower. He conjectured that it would be CHAPTER 1. INTRODUCTION 10 possible to create another collection of geometrical representatives by constructing (4n + 1)-dimensional manifolds Y 4n+1 that are closely related to the original family.
Recommended publications
  • Equivariant Geometric K-Homology with Coefficients
    Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory.
    [Show full text]
  • HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
    RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition.
    [Show full text]
  • An Introduction to Complex Algebraic Geometry with Emphasis on The
    AN INTRODUCTION TO COMPLEX ALGEBRAIC GEOMETRY WITH EMPHASIS ON THE THEORY OF SURFACES By Chris Peters Mathematisch Instituut der Rijksuniversiteit Leiden and Institut Fourier Grenoble i Preface These notes are based on courses given in the fall of 1992 at the University of Leiden and in the spring of 1993 at the University of Grenoble. These courses were meant to elucidate the Mori point of view on classification theory of algebraic surfaces as briefly alluded to in [P]. The material presented here consists of a more or less self-contained advanced course in complex algebraic geometry presupposing only some familiarity with the theory of algebraic curves or Riemann surfaces. But the goal, as in the lectures, is to understand the Enriques classification of surfaces from the point of view of Mori-theory. In my opininion any serious student in algebraic geometry should be acquainted as soon as possible with the yoga of coherent sheaves and so, after recalling the basic concepts in algebraic geometry, I have treated sheaves and their cohomology theory. This part culminated in Serre’s theorems about coherent sheaves on projective space. Having mastered these tools, the student can really start with surface theory, in particular with intersection theory of divisors on surfaces. The treatment given is algebraic, but the relation with the topological intersection theory is commented on briefly. A fuller discussion can be found in Appendix 2. Intersection theory then is applied immediately to rational surfaces. A basic tool from the modern point of view is Mori’s rationality theorem. The treatment for surfaces is elementary and I borrowed it from [Wi].
    [Show full text]
  • Algebraic Topology
    ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group.
    [Show full text]
  • Circles in a Complex Projective Space
    Adachi, T., Maeda, S. and Udagawa, S. Osaka J. Math. 32 (1995), 709-719 CIRCLES IN A COMPLEX PROJECTIVE SPACE TOSHIAKI ADACHI, SADAHIRO MAEDA AND SEIICHI UDAGAWA (Received February 15, 1994) 0. Introduction The study of circles is one of the interesting objects in differential geometry. A curve γ(s) on a Riemannian manifold M parametrized by its arc length 5 is called a circle, if there exists a field of unit vectors Ys along the curve which satisfies, together with the unit tangent vectors Xs — Ϋ(s)9 the differential equations : FSXS = kYs and FsYs= — kXs, where k is a positive constant, which is called the curvature of the circle γ(s) and Vs denotes the covariant differentiation along γ(s) with respect to the Aiemannian connection V of M. For given a point lEJIί, orthonormal pair of vectors u, v^ TXM and for any given positive constant k, we have a unique circle γ(s) such that γ(0)=x, γ(0) = u and (Psγ(s))s=o=kv. It is known that in a complete Riemannian manifold every circle can be defined for -oo<5<oo (Cf. [6]). The study of global behaviours of circles is very interesting. However there are few results in this direction except for the global existence theorem. In general, a circle in a Riemannian manifold is not closed. Here we call a circle γ(s) closed if = there exists So with 7(so) = /(0), XSo Xo and YSo— Yo. Of course, any circles in Euclidean m-space Em are closed. And also any circles in Euclidean m-sphere Sm(c) are closed.
    [Show full text]
  • NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
    NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.
    [Show full text]
  • Grassmannians Via Projection Operators and Some of Their Special Submanifolds ∗
    GRASSMANNIANS VIA PROJECTION OPERATORS AND SOME OF THEIR SPECIAL SUBMANIFOLDS ∗ IVKO DIMITRIC´ Department of Mathematics, Penn State University Fayette, Uniontown, PA 15401-0519, USA E-mail: [email protected] We study submanifolds of a general Grassmann manifold which are of 1-type in a suitably defined Euclidean space of F−Hermitian matrices (such a submanifold is minimal in some hypersphere of that space and, apart from a translation, the im- mersion is built using eigenfunctions from a single eigenspace of the Laplacian). We show that a minimal 1-type hypersurface of a Grassmannian is mass-symmetric and has the type-eigenvalue which is a specific number in each dimension. We derive some conditions on the mean curvature of a 1-type hypersurface of a Grassmannian and show that such a hypersurface with a nonzero constant mean curvature has at most three constant principal curvatures. At the end, we give some estimates of the first nonzero eigenvalue of the Laplacian on a compact submanifold of a Grassmannian. 1. Introduction The Grassmann manifold of k dimensional subspaces of the vector space − Fm over a field F R, C, H can be conveniently defined as the base man- ∈{ } ifold of the principal fibre bundle of the corresponding Stiefel manifold of F unitary frames, where a frame is projected onto the F plane spanned − − by it. As observed already in 1927 by Cartan, all Grassmannians are sym- metric spaces and they have been studied in such context ever since, using the root systems and the Lie algebra techniques. However, the submani- fold geometry in Grassmannians of higher rank is much less developed than the corresponding geometry in rank-1 symmetric spaces, the notable excep- tions being the classification of the maximal totally geodesic submanifolds (the well known results of J.A.
    [Show full text]
  • CR Singular Immersions of Complex Projective Spaces
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 2, 451-477. CR Singular Immersions of Complex Projective Spaces Adam Coffman∗ Department of Mathematical Sciences Indiana University Purdue University Fort Wayne Fort Wayne, IN 46805-1499 e-mail: Coff[email protected] Abstract. Quadratically parametrized smooth maps from one complex projective space to another are constructed as projections of the Segre map of the complexifi- cation. A classification theorem relates equivalence classes of projections to congru- ence classes of matrix pencils. Maps from the 2-sphere to the complex projective plane, which generalize stereographic projection, and immersions of the complex projective plane in four and five complex dimensions, are considered in detail. Of particular interest are the CR singular points in the image. MSC 2000: 14E05, 14P05, 15A22, 32S20, 32V40 1. Introduction It was shown by [23] that the complex projective plane CP 2 can be embedded in R7. An example of such an embedding, where R7 is considered as a subspace of C4, and CP 2 has complex homogeneous coordinates [z1 : z2 : z3], was given by the following parametric map: 1 2 2 [z1 : z2 : z3] 7→ 2 2 2 (z2z¯3, z3z¯1, z1z¯2, |z1| − |z2| ). |z1| + |z2| + |z3| Another parametric map of a similar form embeds the complex projective line CP 1 in R3 ⊆ C2: 1 2 2 [z0 : z1] 7→ 2 2 (2¯z0z1, |z1| − |z0| ). |z0| + |z1| ∗The author’s research was supported in part by a 1999 IPFW Summer Faculty Research Grant. 0138-4821/93 $ 2.50 c 2002 Heldermann Verlag 452 Adam Coffman: CR Singular Immersions of Complex Projective Spaces This may look more familiar when restricted to an affine neighborhood, [z0 : z1] = (1, z) = (1, x + iy), so the set of complex numbers is mapped to the unit sphere: 2x 2y |z|2 − 1 z 7→ ( , , ), 1 + |z|2 1 + |z|2 1 + |z|2 and the “point at infinity”, [0 : 1], is mapped to the point (0, 0, 1) ∈ R3.
    [Show full text]
  • Combinatorial Topology and Applications to Quantum Field Theory
    Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Ambidexterity in K(N)-Local Stable Homotopy Theory
    Ambidexterity in K(n)-Local Stable Homotopy Theory Michael Hopkins and Jacob Lurie December 19, 2013 Contents 1 Multiplicative Aspects of Dieudonne Theory 4 1.1 Tensor Products of Hopf Algebras . 6 1.2 Witt Vectors . 12 1.3 Dieudonne Modules . 19 1.4 Disconnected Formal Groups . 28 2 The Morava K-Theory of Eilenberg-MacLane Spaces 34 2.1 Lubin-Tate Spectra . 35 2.2 Cohomology of p-Divisible Groups . 41 2.3 The Spectral Sequence of a Filtered Spectrum . 47 2.4 The Main Calculation . 50 3 Alternating Powers of p-Divisible Groups 63 3.1 Review of p-Divisible Groups . 64 3.2 Group Schemes of Alternating Maps . 68 3.3 The Case of a Field . 74 3.4 Lubin-Tate Cohomology of Eilenberg-MacLane Spaces . 82 3.5 Alternating Powers in General . 86 4 Ambidexterity 89 4.1 Beck-Chevalley Fibrations and Norm Maps . 91 4.2 Properties of the Norm . 96 4.3 Local Systems . 103 4.4 Examples . 107 5 Ambidexterity of K(n)-Local Stable Homotopy Theory 112 5.1 Ambidexterity and Duality . 113 5.2 The Main Theorem . 121 5.3 Cartier Duality . 126 5.4 The Global Sections Functor . 135 1 Introduction Let G be a finite group, and let M be a spectrum equipped with an action of G. We let M hG denote the homotopy fixed point spectrum for the action of G on M, and MhG the homotopy orbit spectrum for the hG action of G on X. These spectra are related by a canonical norm map Nm : MhG ! M .
    [Show full text]