An Improved Normalization Methodology for Developing Mean Human Response Curves

Total Page:16

File Type:pdf, Size:1020Kb

An Improved Normalization Methodology for Developing Mean Human Response Curves AN IMPROVED NORMALIZATION METHODOLOGY FOR DEVELOPING MEAN HUMAN RESPONSE CURVES Kevin Moorhouse National Highway Traffic Safety Administration United States Paper Number 13-0192 response curves should prove useful in more accurately characterizing the target human response ABSTRACT to aid in the design of more biofidelic dummies. Mean human response curves and associated INTRODUCTION biomechanical response targets are commonly developed from Post-Mortem Human Subject Biomechanical response corridors developed from (PMHS) test data to guide the design of human subject test data are commonly used to guide anthropomorphic test devices (ATDs) by providing the design of anthropomorphic test devices (ATDs) “target” biomechanical responses to impact. Since by providing “target” biomechanical responses to differences in anthropometry and physical impact. The biomechanical responses typically characteristics within a group of PMHS can result in consist of physical measures such as force, widely varying response data, the first step in acceleration, or deflection, and could be in the time- developing target biomechanical responses is domain or another domain (e.g., force-deflection). typically to normalize the responses to a certain The ability of an ATD to match these target “standard” anthropometry representing the ATD to responses defines its biofidelity. be designed or evaluated. The normalization procedure should adjust the response data to account The target responses are most often developed by for the variation in anthropometry and physical subjecting a group of Post-Mortem Human Subjects characteristics, and thus should collapse the group of (PMHS) to an impact or crash scenario, measuring curves closer to a single response so that a mean the resulting responses, and then representing each response can be more accurately established that group of responses such that it characterizes the represents the human response of the “standard” response of the selected population and can be used anthropometry selected. Several methods for to evaluate the biofidelity of the corresponding ATD normalizing PMHS test data can be found in the response. One way to accomplish this is to literature, but there is no consensus as to which is the encompass the entire group of response curves for a most effective. In this study, the two most common given measurement using straight-line segment existing normalization techniques, as well as some corridors, and then a biofidelic dummy response is newly developed methodologies, were evaluated by expected to lie entirely within that corridor applying them to both a side impact PMHS sled test (ISO/TR9790, 1999; Lobdell et al., 1973). Another data set, and a lateral and oblique pendulum side methodology is to reduce the group of responses into impact PMHS data set. The efficacy of the a single mean response curve, which itself represents normalization techniques were assessed for each the ATD design target (Cavanaugh et al., 1986; group of common signals by calculating the average Maltese et al., 2002; Morgan et al., 1986). In percent coefficient of variation (%CV) for time- addition to the mean response curve, standard history curves, and an analogous measure for force- deviation curves can be created around the mean to provide both a visual measure of the variation in the deflection curves (%CVellipse). Both of these measures provide a quantifiable assessment of the group of PMHS, as well as a quantitative measure of similitude of the group of curves (i.e., the that variation for assessing the biofidelity of an ATD. normalization technique resulting in the lowest Generally the standard deviation curves envelop the mean curve more tightly than the straight-line average %CV value or %CVellipse value most effectively collapses the curves). The normalization segment corridors, and there is no requirement that a technique found to consistently perform the best is a biofidelic ATD response must lie completely within newly developed extension of impulse momentum- the standard deviation curves. Representing the based normalization in which the stiffness ratio was target response using the mean response and standard determined from effective stiffness values calculated deviation curves is more appealing than straight-line from the test data, rather than using characteristic segment corridors because it provides a quantifiable lengths. Utilization of an improved normalization framework for assessing the biofidelity of an ATD methodology in the development of mean human Moorhouse 1 while maintaining the shape and characteristics of the Pelvis Force vs Time actual human response to impact. 9000 8000 Since there are a variety of ATDs, each representing 7000 a certain “standard” anthropometry or set of physical characteristics (i.e., 50th percentile male, 5th 6000 percentile female, etc.), it is important that the PMHS 5000 responses used to develop the design targets represent 4000 the same respective population. However, in reality (N) Force 3000 there is often large variation in the physical characteristics within a group of human subjects 2000 (e.g., size, shape, inertial properties, etc.) which 1000 results in widely varying response data. 0 Normalization is a procedure for mathematically -10 0 10 20 30 40 50 60 adjusting the response data to account for the Ti me (ms) variation in physical characteristics, and is often the first step in developing target biomechanical Figure 1. Mean curve resulting from two out-of-phase responses. Successful normalization should collapse responses the group of curves closer to a single response so that a mean response can be more accurately established that represents that of the selected population. developed based on a dimensional analysis approach to geometric scaling in which three scaling ratios Anthropometric variation between subjects such as containing the fundamental dimensions of mass, differences in height and weight can obviously affect length, and time must be defined in order to derive the magnitude of the response data, but differences in scaling ratios for other engineering variables of factors such as body mass distribution (i.e., fat-to- interest. Two of these ratios were defined to assume muscle ratio) can not only affect the magnitude but constant density and modulus of elasticity among also affect the phase or timing of the response data, subjects; the third ratio is the total body mass ratio: which is especially critical to the creation of a mean ρ E M response curve. Figure 1 shows an example of two 1 = 50th 1 = 50th λ = 50th (1) ρ curves (blue and red) which are out of phase but sub Esub M sub similar in shape and magnitude. The resulting mean curve (black) is bimodal, much lower in magnitude, where ρ is density, E is the modulus of elasticity, and has a shape nothing like either of the individual curves. Ideally, normalization would be able to M is total body mass, λ is the total body mass th account for the variation between the subjects which scaling ratio, and the subscripts “50 ” and “sub” caused this out-of-phase response, thus resulting in a represent the “standard” subject and test subject, more representative mean response curve. respectively. Note that since the most common th “standard” subject is the 50 percentile male it will th Although several methods for normalizing human hereafter be referred to with the subscript “50 ”, and subject test data can be found in the literature, the M 50th can be easily obtained from anthropometric two most commonly implemented procedures are tables. mass-based normalization as described by Eppinger (1984), and impulse momentum-based normalization Normalizing factors for engineering variables of as described for single mass systems (e.g., sled & interest (L = length or deflection, F = force, drop tests) by Mertz (1984) and for two-mass A = acceleration, T = time, and V = velocity) can then systems (e.g., pendulum tests) by Viano (1989). be derived from the three ratios in Equation (1) in conjunction with fundamental laws of physics, as Mass-based normalization shown in Equations (2) – (6): (Eppinger et al, 1984) M 1 The mass-based procedure normalizes human subject ρ = ⇒ L = λ 3 L (2) response data based solely on a mass ratio involving L3 50th sub the subject’s total body mass and the total body mass of the “standard” subject to which the responses are to be normalized. The underlying theory was Moorhouse 2 F 2 and then models the impacts as a simple spring-mass E = ⇒ F = λ 3 F (3) system: L2 50th sub m k λ = 50th λ = 50th m k (7) −1 m k F = MA ⇒ A = λ 3 A (4) sub sub 50th sub For the mass ratio, instead of a simple ratio of total L 1 body mass, an effective mass of the impacted body A = ⇒ T = λ 3T (5) T 2 50th sub region is estimated from the response data using an impulse momentum analysis as shown in Equation L (8): = = T V ⇒ V50th Vsub (6) T Fdt T = = ∫0 Fdt meff v0 ⇒ meff (8) ∫0 v The strengths of mass-based normalization are that it 0 is easy to implement, the procedure is independent of test condition (i.e., the same procedure is used for where meff is the effective mass, F is the force sled tests, drop tests, and pendulum tests), and the adjustment made to the response data is directly during impact, vo is the change in velocity during linked to the easy-to-obtain anthropometry measure the impact, and T is the duration of impact. By of total body mass. The fact that the response data is incorporating the response data in the normalization adjusted based solely on total body mass may make it procedure, some of the other causes for variation easy to implement, but it could also be considered a besides anthropometry (discussed earlier) can be weakness because measures of anthropometry alone somewhat accounted for. Unlike the total body mass are often poor predictors of response data.
Recommended publications
  • Phys 140A Lecture 8–Elastic Strain, Compliance, and Stiffness
    Lecture 8 Elastic strains, compliance, and stiffness Review for exam Stress: force applied to a unit area Strain: deformation resulting from stress Purpose of today’s derivations: Generalize Hooke’s law to a 3D body that may be subjected to any arbitrary force. We imagine 3 orthogonal vectors 풙̂, 풚̂, 풛̂ embedded in a solid before we have deformed it. After we have deformed the solid, these vectors might be of different length and they might be pointing in different directions. We describe these deformed vectors 풙′, 풚′, 풛′ in the following way: ′ 풙 = (1 + 휖푥푥)풙̂ + 휖푥푦풚̂ + 휖푥푧풛̂ ′ 풚 = 휖푦푥풙̂ + (1 + 휖푦푦)풚̂ + 휖푦푧풛̂ ′ 풛 = 휖푧푥풙̂ + 휖푧푦풚̂ + (1 + 휖푧푧)풛̂ The components 휖훼훽 define the deformation. They are dimensionless and have values much smaller than 1 in most instances in solid state physics. How one ‘reads’ these vectors is (for example) 휖푥푥force along x, deformation along x; 휖푥푦shear xy-plane along x or y direction (depending which unit vector it is next to) The new axes have new lengths given by (for example): ′ ′ 2 2 2 풙 ∙ 풙 = 1 + 2휖푥푥 + 휖푥푥 + 휖푥푦 + 휖푥푧 Usually we are dealing with tiny deformations so 2nd order terms are often dropped. Deformation also changes the volume of a solid. Considering our unit cube, originally it had a volume of 1. After distortion, it has volume 1 + 휖푥푥 휖푥푦 휖푥푧 ′ ′ ′ ′ 푉 = 풙 ∙ 풚 × 풛 = | 휖푦푥 1 + 휖푦푦 휖푦푧 | ≈ 1 + 휖푥푥 + 휖푦푦 + 휖푧푧 휖푧푥 휖푧푦 1 + 휖푧푧 Dilation (훿) is given by: 푉 − 푉′ 훿 ≡ ≅ 휖 + 휖 + 휖 푉 푥푥 푦푦 푧푧 (2nd order terms have been dropped because we are working in a regime of small distortion which is almost always the appropriate one for solid state physics.
    [Show full text]
  • 19.1 Attitude Determination and Control Systems Scott R. Starin
    19.1 Attitude Determination and Control Systems Scott R. Starin, NASA Goddard Space Flight Center John Eterno, Southwest Research Institute In the year 1900, Galveston, Texas, was a bustling direct hit as Ike came ashore. Almost 200 people in the community of approximately 40,000 people. The Caribbean and the United States lost their lives; a former capital of the Republic of Texas remained a tragedy to be sure, but far less deadly than the 1900 trade center for the state and was one of the largest storm. This time, people were prepared, having cotton ports in the United States. On September 8 of received excellent warning from the GOES satellite that year, however, a powerful hurricane struck network. The Geostationary Operational Environmental Galveston island, tearing the Weather Bureau wind Satellites have been a continuous monitor of the gauge away as the winds exceeded 100 mph and world’s weather since 1975, and they have since been bringing a storm surge that flooded the entire city. The joined by other Earth-observing satellites. This weather worst natural disaster in United States’ history—even surveillance to which so many now owe their lives is today—the hurricane caused the deaths of between possible in part because of the ability to point 6000 and 8000 people. Critical in the events that led to accurately and steadily at the Earth below. The such a terrible loss of life was the lack of precise importance of accurately pointing spacecraft to our knowledge of the strength of the storm before it hit. daily lives is pervasive, yet somehow escapes the notice of most people.
    [Show full text]
  • Beam Element Stiffness Matrices
    Beam Element Stiffness Matrices CEE 421L. Matrix Structural Analysis Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 2014 Truss elements carry only axial forces. Beam elements carry shear forces and bending moments. Frame elements carry shear forces, bending moments, and axial forces. This document presents the development of beam element stiffness matrices in local coordinates. 1 A simply supported beam carrying end-moments Consider a simply supported beam resisting moments M1 and M2 applied at its ends. The flexibility relates the end rotations {θ1, θ2} to the end moments {M1,M2}: θ1 F11 F12 M1 = . θ2 F21 F22 M2 The flexibility coefficients, Fij, may be obtained from Castigliano’s 2nd Theo- ∗ rem, θi = ∂U (Mi)/∂Mi. First Column Second Column 2 CEE 421L. Matrix Structural Analysis – Duke University – Fall 2014 – H.P. Gavin The applied moments M1 and M2 are in equilibrium with the reactions forces V1 and V2; V1 = (M1 + M2)/L and V2 = −(M1 + M2)/L M + M x ! x V (x) = 1 2 M(x) = M − 1 + M L 1 L 2 L The total potential energy of a beam with these forces and moments is: 1Z L M 2 1Z L V 2 U = dx + dx 2 0 EI 2 0 G(A/α) By Castigliano’s Theorem, ∂U θ1 = ∂M1 ∂M(x) ∂V (x) Z L M(x) Z L V (x) = ∂M1 dx + ∂M1 dx 0 EI 0 G(A/α) x 2 x x Z L Z L Z L Z L L − 1 dx αdx L L − 1 dx αdx = + M1 + + M2 0 EI 0 GAL2 0 EI 0 GAL2 and ∂U θ2 = ∂M2 ∂M(x) ∂V (x) Z L M(x) Z L V (x) = ∂M2 dx + ∂M2 dx 0 EI 0 G(A/α) x x x 2 Z L Z L Z L Z L L L − 1 dx αdx L dx αdx = + M1 + + M2 0 EI 0 GAL2 0 EI 0 GAL2
    [Show full text]
  • Introduction to Stiffness Analysis Stiffness Analysis Procedure
    Introduction to Stiffness Analysis displacements. The number of unknowns in the stiffness method of The stiffness method of analysis is analysis is known as the degree of the basis of all commercial kinematic indeterminacy, which structural analysis programs. refers to the number of node/joint Focus of this chapter will be displacements that are unknown development of stiffness equations and are needed to describe the that only take into account bending displaced shape of the structure. deformations, i.e., ignore axial One major advantage of the member, a.k.a. slope-deflection stiffness method of analysis is that method. the kinematic degrees of freedom In the stiffness method of analysis, are well-defined. we write equilibrium equations in 1 2 terms of unknown joint (node) Definitions and Terminology Stiffness Analysis Procedure Positive Sign Convention: Counterclockwise moments and The steps to be followed in rotations along with transverse forces and displacements in the performing a stiffness analysis can positive y-axis direction. be summarized as: 1. Determine the needed displace- Fixed-End Forces: Forces at the “fixed” supports of the kinema- ment unknowns at the nodes/ tically determinate structure. joints and label them d1, d2, …, d in sequence where n = the Member-End Forces: Calculated n forces at the end of each element/ number of displacement member resulting from the unknowns or degrees of applied loading and deformation freedom. of the structure. 3 4 1 2. Modify the structure such that it fixed-end forces are vectorially is kinematically determinate or added at the nodes/joints to restrained, i.e., the identified produce the equivalent fixed-end displacements in step 1 all structure forces, which are equal zero.
    [Show full text]
  • Fundamentals of Biomechanics Duane Knudson
    Fundamentals of Biomechanics Duane Knudson Fundamentals of Biomechanics Second Edition Duane Knudson Department of Kinesiology California State University at Chico First & Normal Street Chico, CA 95929-0330 USA [email protected] Library of Congress Control Number: 2007925371 ISBN 978-0-387-49311-4 e-ISBN 978-0-387-49312-1 Printed on acid-free paper. © 2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 987654321 springer.com Contents Preface ix NINE FUNDAMENTALS OF BIOMECHANICS 29 Principles and Laws 29 Acknowledgments xi Nine Principles for Application of Biomechanics 30 QUALITATIVE ANALYSIS 35 PART I SUMMARY 36 INTRODUCTION REVIEW QUESTIONS 36 CHAPTER 1 KEY TERMS 37 INTRODUCTION TO BIOMECHANICS SUGGESTED READING 37 OF UMAN OVEMENT H M WEB LINKS 37 WHAT IS BIOMECHANICS?3 PART II WHY STUDY BIOMECHANICS?5 BIOLOGICAL/STRUCTURAL BASES
    [Show full text]
  • Chapter 10: Elasticity and Oscillations
    Chapter 10 Lecture Outline 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10: Elasticity and Oscillations •Elastic Deformations •Hooke’s Law •Stress and Strain •Shear Deformations •Volume Deformations •Simple Harmonic Motion •The Pendulum •Damped Oscillations, Forced Oscillations, and Resonance 2 §10.1 Elastic Deformation of Solids A deformation is the change in size or shape of an object. An elastic object is one that returns to its original size and shape after contact forces have been removed. If the forces acting on the object are too large, the object can be permanently distorted. 3 §10.2 Hooke’s Law F F Apply a force to both ends of a long wire. These forces will stretch the wire from length L to L+L. 4 Define: L The fractional strain L change in length F Force per unit cross- stress A sectional area 5 Hooke’s Law (Fx) can be written in terms of stress and strain (stress strain). F L Y A L YA The spring constant k is now k L Y is called Young’s modulus and is a measure of an object’s stiffness. Hooke’s Law holds for an object to a point called the proportional limit. 6 Example (text problem 10.1): A steel beam is placed vertically in the basement of a building to keep the floor above from sagging. The load on the beam is 5.8104 N and the length of the beam is 2.5 m, and the cross-sectional area of the beam is 7.5103 m2.
    [Show full text]
  • Glossary of Materials Engineering Terminology
    Glossary of Materials Engineering Terminology Adapted from: Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, 1997. Brittle fracture: fracture that occurs by rapid crack formation and propagation through the material, without any appreciable deformation prior to failure. Crazing: a common response of plastics to an applied load, typically involving the formation of an opaque banded region within transparent plastic; at the microscale, the craze region is a collection of nanoscale, stress-induced voids and load-bearing fibrils within the material’s structure; craze regions commonly occur at or near a propagating crack in the material. Ductile fracture: a mode of material failure that is accompanied by extensive permanent deformation of the material. Ductility: a measure of a material’s ability to undergo appreciable permanent deformation before fracture; ductile materials (including many metals and plastics) typically display a greater amount of strain or total elongation before fracture compared to non-ductile materials (such as most ceramics). Elastic modulus: a measure of a material’s stiffness; quantified as a ratio of stress to strain prior to the yield point and reported in units of Pascals (Pa); for a material deformed in tension, this is referred to as a Young’s modulus. Engineering strain: the change in gauge length of a specimen in the direction of the applied load divided by its original gauge length; strain is typically unit-less and frequently reported as a percentage.
    [Show full text]
  • On the Relationship Between Indenation Hardness and Modulus, and the Damage Resistance of Biological Materials
    bioRxiv preprint doi: https://doi.org/10.1101/107284; this version posted February 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. On the relationship between indenation hardness and modulus, and the damage resistance of biological materials. David Labontea,∗, Anne-Kristin Lenzb, Michelle L. Oyena aThe NanoScience Centre, Department of Engineering, Cambridge, UK bUniversity of Applied Sciences, Bremen, Germany Abstract The remarkable mechanical performance of biological materials is based on intricate structure-function relation- ships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical back- ground and associated interpretation of the parameters measured via indentation derives largely from research on ‘traditional’ engineering materials such as metals or ceramics. Here, we discuss the functional relevance of inden- tation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus, illus- trating that hardness is not an independent material property. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish crite- ria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is a proxy for the ratio between irreversible and reversible deformation during indentation, and the material’s yield strength.
    [Show full text]
  • Direct Stiffness Method: Beams
    Module 4 Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version 2 CE IIT, Kharagpur Lesson 27 The Direct Stiffness Method: Beams Version 2 CE IIT, Kharagpur Instructional Objectives After reading this chapter the student will be able to 1. Derive member stiffness matrix of a beam element. 2. Assemble member stiffness matrices to obtain the global stiffness matrix for a beam. 3. Write down global load vector for the beam problem. 4. Write the global load-displacement relation for the beam. 27.1 Introduction. In chapter 23, a few problems were solved using stiffness method from fundamentals. The procedure adopted therein is not suitable for computer implementation. In fact the load displacement relation for the entire structure was derived from fundamentals. This procedure runs into trouble when the structure is large and complex. However this can be much simplified provided we follow the procedure adopted for trusses. In the case of truss, the stiffness matrix of the entire truss was obtained by assembling the member stiffness matrices of individual members. In a similar way, one could obtain the global stiffness matrix of a continuous beam from assembling member stiffness matrix of individual beam elements. Towards this end, we break the given beam into a number of beam elements. The stiffness matrix of each individual beam element can be written very easily. For example, consider a continuous beam ABCD as shown in Fig. 27.1a. The given continuous beam is divided into three beam elements as shown in Fig. 27.1b. It is noticed that, in this case, nodes are located at the supports.
    [Show full text]
  • Introduction to the Stiffness (Displacement) Method
    MANE 4240 & CIVL 4240 Reading assignment: Introduction to Finite Elements Chapter 2: Sections 2.1-2.5 + Lecture notes Summary: Introduction to the Stiffness • Developing the finite element equations for a system of (Displacement) Method: springs using the “direct stiffness” approach • Application of boundary conditions Analysis of a system of springs • Physical significance of the stiffness matrix • Direct assembly of the global stiffness matrix Prof. Suvranu De • Problems FEM analysis scheme F1x F F 2x 3x x Step 1: Divide the problem domain into non overlapping regions (“elements”) connected to each other through special points k1 k2 (“nodes”) Step 2: Describe the behavior of each element Problem Analyze the behavior of the system composed of the two springs Step 3: Describe the behavior of the entire body by putting loaded by external forces as shown above together the behavior of each of the elements (this is a process known as “assembly”) Given F1x , F2x ,F3x are external loads. Positive directions of the forces are along the positive x-axis k1 and k2 are the stiffnesses of the two springs 1 F1x k F2x k2 F3x F F F 1 x 1x 2x 3x x 1 2 3 Element 2 k k Element 1 1 2 d1x d2x d3x Solution Node 1 Step 1: In order to analyze the system we break it up into smaller Solution parts, i.e., “elements” connected to each other through “nodes” Step 2: Analyze the behavior of a single element (spring) F1x k F2x k2 F3x 1 x 1 2 3 Element 2 Element 1 © 2002 Brooks/Cole Publishing / Thomson Learning™ d1x d2x d3x Node 1 Two nodes: 1, 2 ˆ ˆ Unknowns: nodal displacements d , d ,d , Nodal displacements: d1x d2x 1x 2x 3x ˆ ˆ Nodal forces: f1x f2x Spring constant: k Behavior of a linear spring (recap) F x k k 1 F d k d F = Force in the spring © 2002 Brooks/Cole Publishing / Thomson Learning™ d = deflection of the spring Local (xˆ , yˆ , zˆ ) and global (x,y,z) coordinate systems k = “stiffness” of the spring Hooke’s Law F = kd 2 Note T fˆ ˆ 1.
    [Show full text]
  • Analysis of the Stiffness Ratio at the Interim Layer of Frame-Supported Multi-Ribbed Lightweight Walls Under Low-Reversed Cyclic Loading
    applied sciences Article Analysis of the Stiffness Ratio at the Interim Layer of Frame-Supported Multi-Ribbed Lightweight Walls under Low-Reversed Cyclic Loading Suizi Jia 1,*, Wanlin Cao 1, Yuchen Zhang 2 and Quan Yuan 3 Received: 23 October 2015; Accepted: 11 January 2016; Published: 15 January 2016 Academic Editor: César Vasques 1 College of Architecture and Civil Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China; [email protected] 2 Academy of Railway Sciences, Scientific & Technological Information Research Institute, No. 2 Daliushu Road, Haidian District, Beijing 100081, China; [email protected] 3 School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing 100044, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6739-6617; Fax: +86-10-6739-6617 Abstract: By conducting low-reversed cyclic loading tests, this paper explores the load-bearing performance of frame-supported multi-ribbed lightweight wall structures. The finite-element software (OpenSees) is used to simulate the process with the shear wall width (at the frame-supported layer) and different hole opening approaches (for multi-ribbed lightweight walls) as variables. The conclusions reflect the influence of the stiffness ratio at the interim layer on the load-bearing performance of the structure. On this basis, the paper identifies the preferable numerical range for engineering design, which provides a solid foundation for the theoretical advancement of the structures in this study. Keywords: frame-supported structure; multi-ribbed lightweight wall; OpenSees; stiffness ratio; interim layer 1. Introduction The wide application of frame-supported structures serves the increasing demand for modern buildings that are designed and constructed with multiple functions for various purposes.
    [Show full text]
  • Chapter 2 – Introduction to the Stiffness (Displacement) Method
    CIVL 7/8117 Chapter 2 - The Stiffness Method 1/32 Chapter 2 – Introduction to the Stiffness (Displacement) Method Learning Objectives • To define the stiffness matrix • To derive the stiffness matrix for a spring element • To demonstrate how to assemble stiffness matrices into a global stiffness matrix • To illustrate the concept of direct stiffness method to obtain the global stiffness matrix and solve a spring assemblage problem • To describe and apply the different kinds of boundary conditions relevant for spring assemblages • To show how the potential energy approach can be used to both derive the stiffness matrix for a spring and solve a spring assemblage problem The Stiffness (Displacement) Method This section introduces some of the basic concepts on which the direct stiffness method is based. The linear spring is simple and an instructive tool to illustrate the basic concepts. The steps to develop a finite element model for a linear spring follow our general 8 step procedure. 1. Discretize and Select Element Types - Linear spring elements 2. Select a Displacement Function - Assume a variation of the displacements over each element. 3. Define the Strain/Displacement and Stress/Strain Relationships - use elementary concepts of equilibrium and compatibility. CIVL 7/8117 Chapter 2 - The Stiffness Method 2/32 The Stiffness (Displacement) Method 4. Derive the Element Stiffness Matrix and Equations - Define the stiffness matrix for an element and then consider the derivation of the stiffness matrix for a linear- elastic spring element. 5. Assemble the Element Equations to Obtain the Global or Total Equations and Introduce Boundary Conditions - We then show how the total stiffness matrix for the problem can be obtained by superimposing the stiffness matrices of the individual elements in a direct manner.
    [Show full text]