Asteroids : Space- and Ground-Based Observational Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations ⇑ Petr Pravec A, , Alan W
Icarus 221 (2012) 365–387 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations ⇑ Petr Pravec a, , Alan W. Harris b, Peter Kušnirák a, Adrián Galád a,c, Kamil Hornoch a a Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 1, CZ-25165 Ondrˇejov, Czech Republic b 4603 Orange Knoll Avenue, La Cañada, CA 91011, USA c Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia article info abstract Article history: We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main- Received 27 February 2012 belt and near-Earth asteroids observed at Ondrˇejov and Table Mountain Observatory from 1978 to 2011. Revised 27 July 2012 Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. Accepted 28 July 2012 We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Hori- Available online 13 August 2012 zons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the cat- Keywords: alog values for smaller asteroids that becomes prominent in a range of H greater than 10 and is partic- Asteroids ularly big above H 12. The mean (H H) value is negative, i.e., the catalog H values are Photometry catalog À Infrared observations systematically too bright. -
Orbit Determination of Eclipsing Binary Asteroids from Photometry
Orbit determination of eclipsing binary asteroids from photometry Petr Scheirich, Petr Pravec Ondrejov obs., Czech Republic and many observers Orbiting couples: "pas de deux" in the Solar System and the Milky Way Paris, October 10-12, 2011 Lightcurve of ordinary asteroid First binaries resolved from photometry 1994 AW1 (Pravec and Hahn, 1997) First binaries resolved from photometry 1996 FG3 (Pravec et al, 2000) Asynchronous binary Models of binaries derived from photometry • 10 NEA binaries (22 oppositions) • 15 MBA binaries (33 oppositions) Where all the data come from? 2006 Why to do photometry of binaries? Why to do photometry of binaries? • poles distribution • dynamical evolution Lightcurve of binary asteroid Primary Secondary Primary event Secondary event Long-period component extraction L.p. component = mutual events + rotation of secondary (The long period component of) Lightcurve simulation – the direct problem Input parameters: • Heliocentric orbit geometry • Keplerian elements of mutual orbit (circular, eccentric) • Shape and size ratio of components • Scattering law Two-axis ellipsoids or any arbitrary shape approximated by polyhedra with triangular facets The lightcurve of the system is computed using simple ray-traycing code. The inverse problem Fitted parameters: • Keplerian elements of mutual orbit: • a/Ap – semimajor axis • lP – ecl. longitude of orbit’s pole • bP – ecl. latitude of orbit’s pole • Porb – sidereal orbital period • L0 – mean length of secondary at given epoch • e – eccentricity • w – argument of pericenter • Shape and size ratio of components: • flattening of primary Ap /Cp, • elongation of secondary As /Cs, • size ratio of both bodies As / Ap Pre-estimates of initial parameters • Synodic orbital period • Components size ratio Pre-estimates of initial parameters Sidereal orbital period and L0 (argument of mean length of secondary for JD0): Visual identification of contacts: Time-increasing L of contacts should lie on a straight line defined by where n = 2/Psid. -
Cumulative Index to Volumes 1-45
The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) .................. -
The Minor Planet Bulletin, We Feel Safe in Al., 1989)
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected. -
Binary Asteroid Population. 2. Anisotropic Distribution of Orbit Poles of Small, Inner Main-Belt Binaries
Binary Asteroid Population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries P. Pravec a, P. Scheirich a, D. Vokrouhlick´y b, A. W. Harris c, P. Kuˇsnir´ak a, K. Hornoch a, D. P. Pray d, D. Higgins e, A. Gal´ad a,f, J. Vil´agi f, S.ˇ Gajdoˇs f, L. Kornoˇs f, J. Oey g, M. Hus´arik h, W. R. Cooney i, J. Gross i, D. Terrell i,j, R. Durkee k, J. Pollock ℓ, D. Reichart m, K. Ivarsen m, J. Haislip m, A. LaCluyze m, Yu. N. Krugly n, N. Gaftonyuk o, R. D. Stephens p, R. Dyvig q, V. Reddy r, V. Chiorny n, O. Vaduvescu s,t, P. Longa-Pe˜na s,u, A. Tudorica v,w, B. D. Warner x, G. Masi y, J. Brinsfield z, R. Gon¸calves aa, P. Brown ab, Z. Krzeminski ab, O. Gerashchenko ac, V. Shevchenko n, I. Molotov ad, F. Marchis ae,af aAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic bInstitute of Astronomy, Charles University, Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague 8, Czech Republic c4603 Orange Knoll Avenue, La Ca˜nada, CA 91011, U.S.A. dCarbuncle Hill Observatory, W. Brookfield, MA, U.S.A. eHunters Hill Observatory, Ngunnawal, Canberra, Australia f Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia gLeura Observatory, Leura, N.S.W., Australia hAstronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatransk´a Lomnica, Slovakia iSonoita Research Observatory, 77 Paint Trail, Sonoita, AZ 85637, U.S.A. -
Tidal Dissipation in Rubble-Pile Asteroids
Tidal dissipation in rubble-pile asteroids Item Type Article Authors Nimmo, Francis; Matsuyama, Isamu Citation Nimmo, F., & Matsuyama, I. (2019). Tidal dissipation in rubble- pile asteroids. Icarus, 321, 715-721. DOI 10.1016/j.icarus.2018.12.012 Publisher ACADEMIC PRESS INC ELSEVIER SCIENCE Journal ICARUS Rights © 2018 Elsevier Inc. All rights reserved. Download date 24/09/2021 11:51:28 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final accepted manuscript Link to Item http://hdl.handle.net/10150/632093 Tidal dissipation in rubble-pile asteroids Francis Nimmo Department of Earth and Planetary Sciences, University of California Santa Cruz Isamu Matsuyama Lunar and Planetary Laboratory, University of Arizona Abstract We develop a simple scaling argument for frictional dissipation in rubble- pile asteroids, parameterized as an effective dissipation factor Q. This scaling is combined with a prediction (Goldreich and Sari, 2009) for the tidal response amplitude, parameterized by the Love number k2. We compare the combined scaling with k2/Q values inferred from asteroid binaries in which the semi- major axis is determined by a balance between tidal dissipation and the binary YORP (or BYORP) effect (Jacobson and Scheeres, 2011). The k2/Q scaling matches the inferred values if dissipation is confined to a regolith layer of thickness ∼30 m, similar to the available asteroid regolith thickness estimates. The scaling suggests a regolith thickness that is independent of (or decreases slightly with) increasing asteroid radius; this result is consistent with at least one model of regolith generation via impacts. Keywords: 1 1. Introduction 2 The amplitude and phase of an object’s response to tides provide informa- 3 tion on its internal structure (Moore and Schubert, 2000, e.g.). -
Tidal Dissipation in Rubble-Pile Asteroids
Tidal dissipation in rubble-pile asteroids Francis Nimmo Department of Earth and Planetary Sciences, University of California Santa Cruz Isamu Matsuyama Lunar and Planetary Laboratory, University of Arizona Abstract We develop a simple scaling argument for frictional dissipation in rubble- pile asteroids, parameterized as an effective dissipation factor Q. This scaling is combined with a prediction (Goldreich and Sari, 2009) for the tidal response amplitude, parameterized by the Love number k2. We compare the combined scaling with k2/Q values inferred from asteroid binaries in which the semi- major axis is determined by a balance between tidal dissipation and the binary YORP (or BYORP) effect (Jacobson and Scheeres, 2011). The k2/Q scaling matches the inferred values if dissipation is confined to a regolith layer of thickness ∼30 m, similar to the available asteroid regolith thickness estimates. The scaling suggests a regolith thickness that is independent of (or decreases slightly with) increasing asteroid radius; this result is consistent with at least one model of regolith generation via impacts. Keywords: 1 1. Introduction 2 The amplitude and phase of an object’s response to tides provide informa- 3 tion on its internal structure (Moore and Schubert, 2000, e.g.). This response 4 is typically described by the Love numbers k2 and h2 (Munk and MacDonald, 5 1960). These dimensionless numbers quantify the amplitude of the response 6 to the perturbing tidal potential, where h2 describes the shape response and 7 k2 the gravity response. A uniform, strengthless body has h2=2.5 and k2=1.5. 8 A body with non-zero rigidity and/or mass concentrated towards its centre 9 will have smaller Love numbers. -
Observation of Asteroids with Gravity - Physical Characterization of Binary Systems
SF2A 2014 J. Ballet, F. Bournaud, F. Martins, R. Monier and C. Reyl´e(eds) OBSERVATION OF ASTEROIDS WITH GRAVITY - PHYSICAL CHARACTERIZATION OF BINARY SYSTEMS A. Matter1 2, M. Delbo3, B. Carry4 and P. Tanga3 Abstract. Density and internal structures are among the most important characteristics of asteroids, yet these properties are also some of the least known. For distant asteroids (in the Main Belt and beyond) these properties were up to now accessible only for the largest (>100 km in size) asteroids. Going to smaller and fainter asteroids can revolutionize our understanding because we will be sampling a new regime in physical properties. Here we discuss how ground-based optical interferometry with the GRAVITY instrument can be used to observe the motion of asteroid satellites to determine the mass of small binary systems. Following the expected sensitivity performances in K-band of GRAVITY, we present a sample of binary targets potentially observable in single-field mode. The feasibility of such observations will strongly be dependent on the ability of the control software of GRAVITY to track objects moving at high rate on the sky (differential motion ∼ 10 mas:s−1). Although the dual-field mode could allow to increase the sample of small binary asteroids observable, it seems to be currently unfeasible given the high differential motion of asteroids. Keywords: interferometry, asteroids, internal structure, density 1 Introduction Density and internal structure are probably the most fundamental and at the same time the least constrained characteristics of asteroids. They indeed reflect the accretional and collisional environment of the early solar system. -
Polarimetric Observations of Hungaria Asteroids
A&A 468, 1109–1114 (2007) Astronomy DOI: 10.1051/0004-6361:20077178 & c ESO 2007 Astrophysics Polarimetric observations of Hungaria asteroids R. Gil-Hutton1, D. Lazzaro2, and P. Benavidez3 1 Complejo Astronómico El Leoncito (Casleo) and Universidad Nacional de San Juan, Av. España 1512 sur, J5402DSP, San Juan, Argentina e-mail: [email protected] 2 Observatório Nacional, R. Gal. José Cristino 77, 20921-400 Rio de Janeiro, Brazil e-mail: [email protected] 3 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain Received 26 January 2007 / Accepted 12 March 2007 ABSTRACT Aims. We present the results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the Hungaria dynamical group. Methods. The data were obtained with the Casprof polarimeter at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation. The campaign began in 2000, and data on a sample of 24 members of the Hungaria group were obtained. We use the slope – albedo or Pmin – albedo relationships to get polarimetric albedos for 18 of these objects. Results. Only two Xe-type objects, 434 Hungaria and 3447 Burkhalter, shown a polarimetric behavior compatible with a high albedo object. The A-type asteroid 1600 Vyssotsky has a polarimetric behavior similar to what was observed by Fornasier et al. (2006) for 863 Benkolea, and four objects show Pmin values consistent with dark surfaces. Key words. solar system: general – techniques: polarimetric – minor planets, asteroids 1. -
Dynamics of the Hungaria Asteroids
Icarus 207 (2010) 769–794 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dynamics of the Hungaria asteroids Andrea Milani a,*, Zoran Knezˇevic´ b, Bojan Novakovic´ b, Alberto Cellino c a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c INAF – Osservatorio Astronomico di Torino Pino Torinese, Italy article info abstract Article history: To try to understand the dynamical and collisional evolution of the Hungaria asteroids we have built a Received 5 September 2009 large catalog of accurate synthetic proper elements. Using the distribution of the Hungaria, in the spaces Revised 11 December 2009 of proper elements and of proper frequencies, we can study the dynamical boundaries and the internal Accepted 16 December 2009 structure of the Hungaria region, both within a purely gravitational model and also showing the signature Available online 28 December 2009 of the non-gravitational effects. We find a complex interaction between secular resonances, mean motion resonances, chaotic behavior and Yarkovsky-driven drift in semimajor axis. We also find a rare occur- Keywords: rence of large scale instabilities, leading to escape from the region. This allows to explain the complex Asteroids shape of a grouping which we suggest is a collisional family, including most Hungaria but by no means Asteroids, Dynamics Collisional physics all; we provide an explicit list of non-members of the family. There are finer structures, of which the most Asteroids, composition significant is a set of very close asteroid couples, with extremely similar proper elements. -
University Microfilms International 300 N
ASTEROID TAXONOMY FROM CLUSTER ANALYSIS OF PHOTOMETRY. Item Type text; Dissertation-Reproduction (electronic) Authors THOLEN, DAVID JAMES. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 21:10:18 Link to Item http://hdl.handle.net/10150/187738 INFORMATION TO USERS This reproduction was made from a copy of a docum(~nt sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of ti.e material submitted. The following explanation of techniques is provided to help clarify markings or notations which may ap pear on this reproduction. I. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image alld duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the pagt' can be found in the adjacent frame.