Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development

Total Page:16

File Type:pdf, Size:1020Kb

Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development viruses Review Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development Anuj Sharma * and Barbara Knollmann-Ritschel Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; [email protected] * Correspondence: [email protected] Received: 27 December 2018; Accepted: 7 February 2019; Published: 18 February 2019 Abstract: Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates. Keywords: Venezuelan equine encephalitis virus; alphavirus; inflammation; encephalitis; viral and host factors; blood brain barrier; pathogenesis; vaccines 1. Introduction Venezuelan equine encephalitis virus (VEEV) is a member of genus Alphavirus in the family Togaviridae. VEEV complex is a group of 14 antigenic varieties divided into 7 species. The VEEV species include four antigenic varieties namely IA/B, IC, ID, and IE, all of which cause human disease that is indistinguishable between the antigenic varieties [1]. Subtypes IA/B and C are epizootic strains that cause fulminant disease and high mortality in equines. Subtypes ID and IE are enzootic strains that are typically avirulent in equines; however, IE can be neurovirulent in equines. VEEV is an enveloped virus which is maintained in nature in a cycle between rodents and mosquitoes with epizootic strains sporadically causing outbreaks in equines and humans (Figure1)[ 2,3]. The geographic distribution and outbreaks of VEEV in equines and humans has been reviewed in detail by Aguilar et al. [1] and Weaver et al. [4]. VEEV is a Category B agent as defined by the Centers for Disease Control and Prevention, and National Institutes of Health. Biosafety level 3 containment is required for handling of live virulent strains of VEEV. Two live-attenuated strains of VEEV, namely TC-83 and V3526, can be safely handled at biosafety level 2 containment [5]. VEEV infection in humans starts with an asymptomatic incubation period of 1–5 days followed by the onset of a febrile illness characterized by fever, headache, nausea, vomiting, myalgia, ocular pain, lower back pain and diarrhea lasting for 1–4 days [6]. The short febrile illness may progress into fulminant encephalitis causing convulsions, hemiparesis, behavioral changes, and alteration of consciousness. A more severe infection can occur which is associated with hemichorea, seizures, and stupor or coma [7–9]. Mortality in humans is <1%, Viruses 2019, 11, 164; doi:10.3390/v11020164 www.mdpi.com/journal/viruses Viruses 2018, 10, x 2 of 32 illness characterized by fever, headache, nausea, vomiting, myalgia, ocular pain, lower back pain and diarrhea lasting for 1-4 days [6]. The short febrile illness may progress into fulminant encephalitis causingViruses 2019 convulsions,, 11, 164 hemiparesis, behavioral changes, and alteration of consciousness. A more2 of 32 severe infection can occur which is associated with hemichorea, seizures, and stupor or coma [7–9]. Mortality in humans is <1%, but the incidence of neurological disease can be up to 14% in infected patientsbut the incidence[10]. The ofmouse neurological is the most disease common can be model up to 14%used in to infected investigate patients VEEV [10 ].pathogenesis The mouse isas the it closelymost common mimics modelthe biphasic used to investigatecourse of peripheral VEEV pathogenesis replication as itfollowed closely mimicsby infection the biphasic of the course central of nervousperipheral system replication (CNS) followed as seen in by severe infection cases of theof human central VEEV nervous infection system (CNS)i.e., the as initial seen infebrile severe illness cases dueof human to virus VEEV replication infection in the i.e., peripheral the initial febrileorgans illness followed due by to virusa second replication phase of in CNS the peripheralinfection (Figure organs 2)followed [11]. In byhealthy a second immunocompetent phase of CNS infection adult mice (Figure models2)[ 11 ].such In healthy as CD-1 immunocompetent Swiss [12], Balb/c adult[13], miceand C57BL6models [14] such mice, as CD-1 infection Swiss with [12], wild-type Balb/c [13 VEEV], and causes C57BL6 a biphasic [14] mice, disease infection similar with to wild-typethe severe VEEVform ofcauses disease a biphasic in humans. disease VEEV similar can tobe thedetected severe in form local of lymph disease nodes in humans. as early VEEV as 6 canh post be detected infection. in Animalslocal lymph become nodes viremic as early within as 6 12 h posth of infection. By Animals 12 h post become infection, viremic VEEV within can 12also h be of infection.detected inBy other 12 h peripheral post infection, organs. VEEV The can virus also replicates be detected in the in otherlymphoid peripheral tissue organs.e.g., lymph The nodes virus replicatesand spleen, in asthe well lymphoid as in non-lymphoid tissue e.g., lymph organs nodes including and spleen, the heart, as well lung, as kidney, in non-lymphoid and pancreas. organs In the including lymphoid the tissues,heart, lung, VEEV kidney, induces and cellular pancreas. necrosis In the and lymphoid an inflammatory tissues, VEEV cell inducesresponse. cellular Loss or necrosis alteration and of an germinalinflammatory center cell structures response. in Lossthe sp orleen alteration is observed of germinal as early centeras 24 h structures post infection in the and spleen is accompanied is observed byas lymphocyte early as 24 h karryohrexis post infection and and apoptosis, is accompanied as well by as lymphocyte macrophage karryohrexis infiltration. andRecovery apoptosis, starts as by well 72 has post macrophage infection. infiltration.The virus is Recovery cleared from starts peripheral by 72 h post organs infection. within The 4–5 virus days isof cleared infection. from In peripheralthe brain, VEEVorgans first within appears 4–5 in days the ofolfactory infection. lobe In around the brain, 36–48 VEEV h post first infection. appears The in virus the olfactory then spreads lobe rapidly around throughout36–48 h post the infection. brain. ThePerivascular virus then cuffing spreads and rapidly lymphocyte throughout infiltration the brain. are Perivascular observed cuffing72 h post and infection.lymphocyte Viral infiltration spread are and observed corresponding 72 h post infection. inflammation Viral spread are characterized and corresponding by inflammationperivascular lymphocyticare characterized cuffing, by perivascular gliosis, neurodegeneration, lymphocytic cuffing, andgliosis, vacuolization neurodegeneration, of neuropil, and which vacuolization increase in of intensityneuropil, with which time. increase The kinetics in intensity of viral with spread time. Theinto kinetics the brain of is viral dependent spread into on the brainroute isof dependentinfection. Viruson the appears route of in infection. the CNS Virus much appears earlier in when the CNS infection much earlier is via whenaerosol infection exposure is via due aerosol to the exposure direct infectiondue to the of direct olfactory infection neuroepithelium of olfactory neuroepithelium by aerosolized of by VEEV aerosolized particles, of VEEVcompared particles, to a subcutaneous compared to a infectionsubcutaneous route infection which requires route which virus requires replication virus inreplication lymphoid intissue lymphoid and the tissue development and the development of viremia inof order viremia for inthe order virusfor to then thevirus be able to to then infect be ablethe olfactory to infect neuroepitheliu the olfactory neuroepitheliumm [13,15,16]. Additionally, [13,15,16]. extensiveAdditionally, hepatocellular extensive degeneration hepatocellular and degeneration interstitial pneumonia and interstitial are seen pneumonia in human are VEEV seen infections; in human however,VEEV infections; these are however, not the primary these are pathological not the primary findings pathological in animal findings models inused animal for investigating models used VEEVfor investigating infection [17]. VEEV Characterization infection [17]. Characterizationof VEEV pathogenesis of VEEV has pathogenesis been aided by has the been availability aided by theof clearlyavailability defined of clearly mutant defined strains mutant developed strains by developed point mutations by point in mutations the full-length in the clone full-length of wild-type clone of Trinidadwild-type Donkey Trinidad (TrD) Donkey strain (TrD) (subtype strain (subtype I/AB) of I/AB) VEEV of (Table VEEV (Table1), which1), which based based on the on theextent extent of attenuationof
Recommended publications
  • Patentability of Human-Animal Chimeras Ryan Hagglund
    Santa Clara High Technology Law Journal Volume 25 | Issue 1 Article 4 2008 Patentability of Human-Animal Chimeras Ryan Hagglund Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj Part of the Law Commons Recommended Citation Ryan Hagglund, Patentability of Human-Animal Chimeras, 25 Santa Clara High Tech. L.J. 51 (2012). Available at: http://digitalcommons.law.scu.edu/chtlj/vol25/iss1/4 This Article is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in Santa Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact [email protected]. PATENTABILITY OF HUMAN-ANIMAL CHIMERAS Ryan Hagglundt Abstract The chimera was a mythological creature with a lion 's head, goat's body, and serpent's tail. Because of recent advances in biotechnology, such permutations on species are no longer the stuff of myth and legend The term "chimera " has come to describe a class of genetically engineered creatures composed of some cells from one species, which thus contain genetic material derived entirely from that species, and some cells from another species, containing only genetic material from that species. Scientists have created a goat- sheep chimera or "geep" which exhibits physical characteristicsof both animals. Likewise, scientists have also used the tools of modern molecular biology to create human-animal chimeras containing both human and animal cells. While none of the human-animal chimeras hitherto created have exhibited significant human characteristics,the synthesis of human-animal chimeras raises significant ethical concerns.
    [Show full text]
  • Identification of Eilat Virus and Prevalence of Infection Among
    Virology 530 (2019) 85–88 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Identification of Eilat virus and prevalence of infection among Culex pipiens L. populations, Morocco, 2016 T Amal Bennounaa,1, Patricia Gilb,c,1, Hicham El Rhaffoulid, Antoni Exbrayatb,c, Etienne Loireb,c, ⁎ ⁎⁎ Thomas Balenghiena,b,c, Ghita Chlyehe, Serafin Gutierrezb,c, , Ouafaa Fassi Fihria, a Department of animal pathology and public health. Hassan II Agronomy & Veterinary Medicine Institute, Rabat, Morocco b CIRAD, UMR ASTRE, F-34398 Montpellier, France c ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France d Veterinary Division, FAR Military Health Service, Meknes, Morocco e Département de Production, Protection et Biotechnologies Végétales, Unité de Zoologie, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco ARTICLE INFO ABSTRACT Keywords: Eilat virus (EILV) is described as one of the few alphaviruses restricted to insects. We report the record of a Eilat virus nearly-complete sequence of an alphavirus genome showing 95% identity with EILV during a metagenomic Alphavirus analysis performed on 1488 unblood-fed females and 1076 larvae of the mosquito Culex pipiens captured in Culex pipiens Rabat (Morocco). Genetic distance and phylogenetic analyses placed the EILV-Morocco as a variant of EILV. The Morocco observed infection rates in both larvae and adults suggested an active circulation of the virus in Rabat and its maintenance in the environment either through vertical transmission or through horizontal infection of larvae in breeding sites. This is the first report of EILV out of Israel and in Culex pipiens populations. 1. Introduction from May to September 2016.
    [Show full text]
  • Infectious Dnas Derived from Insect-Specific Flavivirus
    www.nature.com/scientificreports Corrected: Author Correction OPEN Infectious DNAs derived from insect-specifc favivirus genomes enable identifcation of pre- and Received: 10 January 2017 Accepted: 24 April 2017 post-entry host restrictions in Published online: 07 June 2017 vertebrate cells Thisun B. H. Piyasena , Yin X. Setoh, Jody Hobson-Peters, Natalee D. Newton, Helle Bielefeldt-Ohmann, Breeanna J. McLean, Laura J. Vet, Alexander A. Khromykh & Roy A. Hall Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause signifcant human diseases. A novel group of insect-specifc faviviruses (ISFs), which only replicate in mosquitoes, have also been identifed. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modifed OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fbroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.
    [Show full text]
  • Molecular Phylogenetic Analysis
    Assignment #2 Physics 498: Statistical Physics of Biological Complexity and Information Molecular Phylogenetic Analysis Date of Submission: 31th October, 2001 Rahul Roy Center for Biophysics and Computational Biology University of Illinois at Urbana-Champaign email: [email protected] Evolve by Borrowing ? Rahul Roy Center for Biophysics and Computational Biology University of Illinois at Urbana Champaign Introduction Molecular evolution over a period of four billion years has resulted in the development of present myriad of species from a hot soup of molecules. It has resulted in the evolution of complex multicellular organisms (Eukaryotes) along with single-celled organisms like prokaryotes at the same time. The question that has baffled scientists for long is: how did this incredible transition from a soup to this complex state take place? The discussion, that still continues, as how life started from the primordial soup is not the emphasis of the present debate, though Stanley Miller showed in, as back as 1950s, that organic chemicals can be synthesized from completely inorganic inputs. It has been proposed based on structural and functional complexity and fossil evidence that prokaryotes must have predated the eukaryotes by at least 1.0-2.0 billion years [Knoll, 1992]. This has led to the notion that eukaryotic cells have evolved from more simple prokaryotic organisms with which they share numerous common (or related) molecules [Margulis, 1970; Zillig, 1991]. Indeed, studies have shown that a number of eukaryotic organelles (namely mitochondria and chloroplasts) bear a close evolutionary relationship to specific groups of prokaryotes (namely α-proteobacteria and cyanobacteria, respectively) [Gray, 1992] So, how did the complex multicellular eukaryotes evolve from prokaryotes? To understand the origin of the eukaryotic cells a number of theories have been proposed.
    [Show full text]
  • Eastern Equine Encephalitis (EEE) Description
    Eastern Equine Importance Eastern, Western, and Venezuelan equine encephalomyelitis are mosquito-borne, Encephalomyelitis, viral infections that can cause severe encephalitis in horses and humans. Some of Western Equine these viruses also cause disease occasionally in other mammals and birds. No specific treatment is available, and depending on the virus and host, the case fatality rate may Encephalomyelitis and be as high as 90%. As a result of vaccination, severe Eastern (EEE) and Western (WEE) equine encephalomyelitis epidemics no longer occur regularly in the U.S., but Venezuelan Equine sporadic cases and small outbreaks are still seen. Epidemic Venezuelan equine Encephalomyelitis encephalomyelitis (VEE) viruses continue to emerge periodically in South America, and sweep through equine and human populations. One two-year VEE epidemic, Sleeping Sickness which began in 1969, extended from South America to the southern U.S., and caused an estimated 38,000-50,000 cases in equids. Epidemic VEE viruses are also potential Eastern Equine Encephalomyelitis bioterrorist weapons. (EEE) –Eastern Equine Encephalitis, Eastern Encephalitis Etiology Eastern, Western and Venezuelan equine encephalomyelitis result from infection Western Equine Encephalomyelitis by the respectively named viruses in the genus Alphavirus (family Togaviridae). In (WEE) –Western Equine Encephalitis the human literature, the disease is usually called Eastern, Western or Venezuelan equine encephalitis rather than encephalomyelitis. Venezuelan Equine Encephalomyelitis (VEE) –Peste Loca, Venezuelan Equine Eastern equine encephalomyelitis virus Encephalitis, Venezuelan Encephalitis, The numerous isolates of the Eastern equine encephalomyelitis virus (EEEV) can Venezuelan Equine Fever be grouped into two variants. The variant found in North America is more pathogenic than the variant that occurs in South and Central America.
    [Show full text]
  • BWPP Biological Weapons Reader
    BWPP Biological Weapons Reader Edited by Kathryn McLaughlin and Kathryn Nixdorff Geneva 2009 About BWPP The BioWeapons Prevention Project (BWPP) is a global civil society activity that aims to strengthen the norm against using disease as a weapon. It was initiated by a group of non- governmental organizations concerned at the failure of governments to act. The BWPP tracks governmental and other behaviour that is pertinent to compliance with international treaties and other agreements, especially those that outlaw hostile use of biotechnology. The project works to reduce the threat of bioweapons by monitoring and reporting throughout the world. BWPP supports and is supported by a global network of partners. For more information see: http://www.bwpp.org Table of Contents Preface .................................................................................................................................................ii Abbreviations .....................................................................................................................................iii Chapter 1. An Introduction to Biological Weapons ......................................................................1 Malcolm R. Dando and Kathryn Nixdorff Chapter 2. History of BTW Disarmament...................................................................................13 Marie Isabelle Chevrier Chapter 3. The Biological Weapons Convention: Content, Review Process and Efforts to Strengthen the Convention.........................................................................................19
    [Show full text]
  • Candidate Vectors and Rodent Hosts of Venezuelan Equine Encephalitis Virus, Chiapas, 2006–2007
    Am. J. Trop. Med. Hyg., 85(6), 2011, pp. 1146–1153 doi:10.4269/ajtmh.2011.11-0094 Copyright © 2011 by The American Society of Tropical Medicine and Hygiene Candidate Vectors and Rodent Hosts of Venezuelan Equine Encephalitis Virus, Chiapas, 2006–2007 Eleanor R. Deardorff ,* Jose G. Estrada-Franco , Jerome E. Freier , Roberto Navarro-Lopez , Amelia Travassos Da Rosa , Robert B. Tesh , and Scott C. Weaver Institute for Human Infections and Immunity, WHO Collaborating Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Department of Agriculture, Fort Collins, Colorado; Comision Mexico-Estado Unidos para la Prevencion de la Fiebre Aftosa y Otras Enfermedades Exoticas de los Animales, Mexico City, Mexico Abstract. Enzootic Venezuelan equine encephalitis virus (VEEV) has been known to occur in Mexico since the 1960s. The first natural equine epizootic was recognized in Chiapas in 1993 and since then, numerous studies have characterized the etiologic strains, including reverse genetic studies that incriminated a specific mutation that enhanced infection of epizootic mosquito vectors. The aim of this study was to determine the mosquito and rodent species involved in enzootic maintenance of subtype IE VEEV in coastal Chiapas. A longitudinal study was conducted over a year to discern which species and habitats could be associated with VEEV circulation. Antibody was rarely detected in mammals and virus was not isolated from mosquitoes. Additionally, Culex ( Melanoconion ) taeniopus populations were found to be spatially related to high levels of human and bovine seroprevalence. These mosquito populations were concentrated in areas that appear to represent foci of stable, enzootic VEEV circulation.
    [Show full text]
  • A Systematic Review of the Natural Virome of Anopheles Mosquitoes
    Review A Systematic Review of the Natural Virome of Anopheles Mosquitoes Ferdinand Nanfack Minkeu 1,2,3 and Kenneth D. Vernick 1,2,* 1 Institut Pasteur, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, 28 rue du Docteur Roux, 75015 Paris, France; [email protected] 2 CNRS, Unit of Evolutionary Genomics, Modeling and Health (UMR2000), 28 rue du Docteur Roux, 75015 Paris, France 3 Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, 75252 Paris, France * Correspondence: [email protected]; Tel.: +33-1-4061-3642 Received: 7 April 2018; Accepted: 21 April 2018; Published: 25 April 2018 Abstract: Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    ECOLOGY OF CULEX (MELANOCONION) CEDECEI, VECTOR OF EVERGLADES VIRUS IN FLORIDA By ISAIAH J. HOYER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2017 © 2017 Isaiah J. Hoyer To my father, Kevin R. Hoyer and mother Ava L. Hoyer. You have both supported me from Alaska to Florida, and everywhere in between. ACKNOWLEDGMENTS I would like to thank Dr. Nathan Burkett-Cadena for his guidance and council. Much of the work presented is attributed to Dr. Burkett-Cadena’s ingenuity and shared interest in sylvatic cycles of mosquito-host interactions. I thank Dr. Jonathan Day and Dr. Phil Lounibos for their insightful feedback and support. I extend my gratitude to Dr. Erik Blosser for his occasional visits to the field, shared knowledge, and support. I thank Lary Reeves for acquiring the Everglades National Park permit, his company in the Everglades, and his contagious broad exuberant enthusiasm for the natural world. I further extend my thanks to the FMEL technicians who performed a large part of bloodmeal extractions and PCR assays, Carolina Acevedo, Tanise Stenn, Anna Thompson, and Jordan Vann; additionally, thanking Glauber Rocha Pereira for his assistance identifying CO2-baited CDC light-trap mosquito samples. Lastly, I express warm regards to my friends and family for their unwavering encouragement. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...........................................................................................
    [Show full text]
  • Patterns of Abundance, Host Use, and Everglades Virus Infection in Culex (Melanoconion) Cedecei Mosquitoes, Florida, USA Isaiah J
    Patterns of Abundance, Host Use, and Everglades Virus Infection in Culex (Melanoconion) cedecei Mosquitoes, Florida, USA Isaiah J. Hoyer, Carolina Acevedo, Keenan Wiggins, Barry W. Alto, Nathan D. Burkett-Cadena Everglades virus (EVEV), subtype II within the Venezuelan (8,11). Studies in Panama concluded that Cx. panocossa equine encephalitis (VEE) virus complex, is a mosquito- (as Cx. aikenii) mosquitoes were the most important VEE borne zoonotic pathogen endemic to south Florida, USA. vector on the basis of high VEE experimental transmission EVEV infection in humans is considered rare, probably be- rates (9), high experimental infection rates (9), high popu- cause of the sylvatic nature of the vector, the Culex (Mela- lation density (9), and feeding upon VEE reservoir hosts noconion) cedecei mosquito. The introduction of Cx. pano- (10,11). The establishment of Cx. panocossa mosquitoes in cossa, a tropical vector mosquito of VEE virus subtypes that inhabits urban areas, may increase human EVEV exposure. urban areas could link sylvatic transmission foci of EVEV Field studies investigating spatial and temporal patterns of with densely populated areas such as the greater Miami abundance, host use, and EVEV infection of Cx. cedecei metropolitan area through vegetated canals (8). mosquitoes in Everglades National Park found that vector Evidence of sporadic human infections with EVEV in abundance was dynamic across season and region. Ro- south Florida in the 1960s (12,13) spurred numerous field dents, particularly Sigmodon hispidus rats, were primary and laboratory studies to investigate the natural transmis- vertebrate hosts, constituting 77%–100% of Cx. cedecei sion cycle of the virus, focusing on determining the natural blood meals.
    [Show full text]
  • Medical Aspects of Biological Warfare
    Alphavirus Encephalitides Chapter 20 ALPHAVIRUS ENCEPHALITIDES SHELLEY P. HONNOLD, DVM, PhD*; ERIC C. MOSSEL, PhD†; LESLEY C. DUPUY, PhD‡; ELAINE M. MORAZZANI, PhD§; SHANNON S. MARTIN, PhD¥; MARY KATE HART, PhD¶; GEORGE V. LUDWIG, PhD**; MICHAEL D. PARKER, PhD††; JONATHAN F. SMITH, PhD‡‡; DOUGLAS S. REED, PhD§§; and PAMELA J. GLASS, PhD¥¥ INTRODUCTION HISTORY AND SIGNIFICANCE ANTIGENICITY AND EPIDEMIOLOGY Antigenic and Genetic Relationships Epidemiology and Ecology STRUCTURE AND REPLICATION OF ALPHAVIRUSES Virion Structure PATHOGENESIS CLINICAL DISEASE AND DIAGNOSIS Venezuelan Equine Encephalitis Eastern Equine Encephalitis Western Equine Encephalitis Differential Diagnosis of Alphavirus Encephalitis Medical Management and Prevention IMMUNOPROPHYLAXIS Relevant Immune Effector Mechanisms Passive Immunization Active Immunization THERAPEUTICS SUMMARY 479 244-949 DLA DS.indb 479 6/4/18 11:58 AM Medical Aspects of Biological Warfare *Lieutenant Colonel, Veterinary Corps, US Army; Director, Research Support and Chief, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Biodefense Research Pathologist, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland †Major, Medical Service Corps, US Army Reserve; Microbiologist, Division of Virology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Science and Technology Advisor, Detachment
    [Show full text]
  • ICTV Virus Taxonomy Profile: Togaviridae
    ICTV VIRUS TAXONOMY PROFILES Chen et al., Journal of General Virology 2018;99:761–762 DOI 10.1099/jgv.0.001072 ICTV ICTV Virus Taxonomy Profile: Togaviridae Rubing Chen,1,* Suchetana Mukhopadhyay,2 Andres Merits,3 Bethany Bolling,4 Farooq Nasar,5 Lark L. Coffey,6 Ann Powers,7 Scott C. Weaver1 and ICTV Report Consortium Abstract The Togaviridae is a family of small, enveloped viruses with single-stranded, positive-sense RNA genomes of 10–12 kb. Within the family, the genus Alphavirus includes a large number of diverse species, while the genus Rubivirus includes the single species Rubella virus. Most alphaviruses are mosquito-borne and are pathogenic in their vertebrate hosts. Many are important human and veterinary pathogens (e.g. chikungunya virus and eastern equine encephalitis virus). Rubella virus is transmitted by respiratory routes among humans. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Togaviridae, which is available at www.ictv.global/report/togaviridae. Table 1. Characteristics of the family Togaviridae Typical member: Sindbis virus (J02363), species Sindbis virus, genus Alphavirus Virion Enveloped, 65–70 nm spherical virions for alphaviruses or 50–90 nm pleomorphic virions for rubella virus, with a single capsid protein and three or two envelope glycoproteins, respectively Genome 10–12 kb of positive-sense, unsegmented RNA Replication Cytoplasmic, in vesicles derived from the plasma membrane/endosomal compartment. Assembled virions bud from plasma membrane (alphaviruses)
    [Show full text]