Current Consensus and Discussion on Pancreatic Stellate Cell Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primary Outgrowth Cultures Are a Reliable Source of Human Pancreatic
Laboratory Investigation (2015) 95, 1331–1340 © 2015 USCAP, Inc All rights reserved 0023-6837/15 Primary outgrowth cultures are a reliable source of human pancreatic stellate cells Song Han1,4, Daniel Delitto1,4, Dongyu Zhang1, Heather L Sorenson2, George A Sarosi1,3, Ryan M Thomas1,3, Kevin E Behrns1, Shannon M Wallet2, Jose G Trevino1 and Steven J Hughes1 Recent advances demonstrate a critical yet poorly understood role for the pancreatic stellate cell (PSC) in the pathogenesis of chronic pancreatitis (CP) and pancreatic cancer (PC). Progress in this area has been hampered by the availability, fidelity, and/or reliability of in vitro models of PSCs. We examined whether outgrowth cultures from human surgical specimens exhibited reproducible phenotypic and functional characteristics of PSCs. PSCs were cultured from surgical specimens of healthy pancreas, CP and PC. Growth dynamics, phenotypic characteristics, soluble mediator secretion profiles and co-culture with PC cells both in vitro and in vivo were assessed. Forty-seven primary cultures were established from 52 attempts, demonstrating universal α-smooth muscle actin and glial fibrillary acidic protein but negligible epithelial surface antigen expression. Modification of culture conditions consistently led to cytoplasmic lipid accumulation, suggesting induction of a quiescent phenotype. Secretion of growth factors, chemokines and cytokines did not significantly differ between donor pathologies, but did evolve over time in culture. Co-culture of PSCs with established PC cell lines resulted in significant changes in levels of multiple secreted mediators. Primary PSCs co-inoculated with PC cells in a xenograft model led to augmented tumor growth and metastasis. Therefore, regardless of donor pathology, outgrowth cultures produce PSCs that demonstrate consistent growth and protein secretion properties. -
Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1
2912 Vol. 8, 2912–2923, September 2002 Clinical Cancer Research Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1 Jennifer A. Tuxhorn, Gustavo E. Ayala, Conclusions: The stromal microenvironment in human Megan J. Smith, Vincent C. Smith, prostate cancer is altered compared with normal stroma and Truong D. Dang, and David R. Rowley2 exhibits features of a wound repair stroma. Reactive stroma is composed of myofibroblasts and fibroblasts stimulated to Departments of Molecular and Cellular Biology [J. A. T., T. D. D., express extracellular matrix components. Reactive stroma D. R. R.] and Pathology [G. E. A., M. J. S., V. C. S.] Baylor College of Medicine, Houston, Texas 77030 appears to be initiated during PIN and evolve with cancer progression to effectively displace the normal fibromuscular stroma. These studies and others suggest that TGF-1isa ABSTRACT candidate regulator of reactive stroma during prostate can- Purpose: Generation of a reactive stroma environment cer progression. occurs in many human cancers and is likely to promote tumorigenesis. However, reactive stroma in human prostate INTRODUCTION cancer has not been defined. We examined stromal cell Activation of the host stromal microenvironment is pre- phenotype and expression of extracellular matrix compo- dicted to be a critical step in adenocarcinoma growth and nents in an effort to define the reactive stroma environ- progression (1–5). Several human cancers have been shown to ment and to determine its ontogeny during prostate cancer induce a stromal reaction or desmoplasia as a component of progression. carcinoma progression. However, the specific mechanisms of Experimental Design: Normal prostate, prostatic intra- stromal cell activation are not known, and the extent to which epithelial neoplasia (PIN), and prostate cancer were exam- stroma regulates the biology of tumorigenesis is not fully un- ined by immunohistochemistry. -
Skeletal Reorganization and Chromatin Accessibility During Re- Vascularization-Based Blastema Regeneration
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2021 doi:10.20944/preprints202104.0642.v1 Article Keratin5-BMP4 mechanosignaling network regulates cell cyto- skeletal reorganization and chromatin accessibility during re- vascularization-based blastema regeneration Xuelong Wang 1,2,4,†, Huiping Guo 1,6,†, Feifei Yu 1,†, Hui Zhang 1, Ying Peng 1, Chenghui Wang 3, Gang Wei 2, Jizhou Yan 1,5,* 1 Department of Developmental Biology, Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China. 2 CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China 3 Department of Aquaculture, Shanghai Ocean University, Shanghai, China. 4 Present address: Pancreatic Disease Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong Univer- sity, Shanghai, China. 5 CellGene Bioscience, Shanghai, China. * Correspondence: [email protected] † These authors contributed equally to this study. Abstract: Heart regeneration after myocardial infarction remains challenging in reconstruction of blood resupply system. Here, we find that in zebrafish heart after resection of the ventricular apex, the local myocardial cells and the clotted blood cells undergo cell remodeling process via cytoplas- mic exocytosis and nuclear reorganization within revascularization-based blastema. The regenera- tive processes are visualized by spatiotemporal expression of three blastema representative factors (alpha-SMA- which marks for fibrogenesis, Flk1for angiogenesis/hematopoiesis, and Pax3a for re- musculogensis),and two histone modifications (H3K9Ac and H3K9Me3 mark for chromatin re- modeling). Using the cultured zebrafish embryonic fibroblasts we identify blastema fraction com- ponents and show that Krt5 peptide could link cytoskeleton network and BMP4 signaling pathway to regulate the transcription and chromatin accessibility at the blastema representative genes and bmp4 genes. -
Evidence for the Nonmuscle Nature of The" Myofibroblast" of Granulation Tissue and Hypertropic Scar. an Immunofluorescence Study
American Journal of Pathology, Vol. 130, No. 2, February 1988 Copyright i American Association of Pathologists Evidencefor the Nonmuscle Nature ofthe "Myofibroblast" ofGranulation Tissue and Hypertropic Scar An Immunofluorescence Study ROBERT J. EDDY, BSc, JANE A. PETRO, MD, From the Department ofAnatomy, the Department ofSurgery, and JAMES J. TOMASEK, PhD Division ofPlastic and Reconstructive Surgery, and the Department of Orthopaedic Surgery, New York Medical College, Valhalla, New York Contraction is an important phenomenon in wound cell-matrix attachment in smooth muscle and non- repair and hypertrophic scarring. Studies indicate that muscle cells, respectively. Myofibroblasts can be iden- wound contraction involves a specialized cell known as tified by their intense staining of actin bundles with the myofibroblast, which has morphologic character- either anti-actin antibody or NBD-phallacidin. Myofi- istics of both smooth muscle and fibroblastic cells. In broblasts in all tissues stained for nonmuscle but not order to better characterize the myofibroblast, the au- smooth muscle myosin. In addition, nonmuscle myo- thors have examined its cytoskeleton and surrounding sin was localized as intracellular fibrils, which suggests extracellular matrix (ECM) in human burn granula- their similarity to stress fibers in cultured fibroblasts. tion tissue, human hypertrophic scar, and rat granula- The ECM around myofibroblasts stains intensely for tion tissue by indirect immunofluorescence. Primary fibronectin but lacks laminin, which suggests that a antibodies used in this study were directed against 1) true basal lamina is not present. The immunocytoche- smooth muscle myosin and 2) nonmuscle myosin, mical findings suggest that the myofibroblast is a spe- components ofthe cytoskeleton in smooth muscle and cialized nonmuscle type of cell, not a smooth muscle nonmuscle cells, respectively, and 3) laminin and 4) cell. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Pancreatic Stellate Cells in Health and Disease
Pancreatic Stellate Cells in Health and Disease Alpha R. Mekapogu, Srinivasa P. Pothula, Romano C. Pirola, Jeremy S. Wilson, Minoti V. Apte Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Ingham Institute for Applied Medical Research, Sydney, Australia e-mail: [email protected]. Version 1.0, November 17th, 2020 [DOI: 10.3998/panc.2020.08] Abstract the pancreas – chronic pancreatitis and pancreatic cancer. In health, the process of fibrogenesis is a Pancreatic stellate cells (PSCs) are resident cells well-regulated dynamic process which is of the pancreas, found in both the exocrine and necessary for regular turnover of extracellular endocrine parts of the gland. Over the two decades matrix (ECM) that allows remodeling and since these cells were first isolated and cultured maintenance of normal pancreatic architecture. from rodent and human pancreas, research in this However, during injury, the equilibrium between area has progressed at a rapid rate. Our production and degradation of fibrous tissue is knowledge of PSC biology in both health and disrupted leading to excessive deposition of disease has increased significantly. In health, extracellular matrix proteins resulting in fibrosis. PSCs are known to not only play a role in regulating normal extracellular matrix turnover but Pancreatic stellate cells (PSCs) are now are also thought to have progenitor cell functions considered to be the key contributors of pancreatic as well as a role in innate immunity. The critical fibrosis (5, 11, 135). These cells were first roles of PSCs in inflammatory as well as malignant observed by Watari et al. -
Myofibroblasts in Schistosomal Portal Fibrosis Of
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 94(1): 87-93, Jan./Feb. 1999 87 Myofibroblasts in Schistosomal Portal Fibrosis of Man + Zilton A Andrade/ , Sylviane Guerret*, André LM Fernandes Centro de Pesquisas Gonçalo Moniz-Fiocruz , Rua Valdemar Falcão 121, 40295-001 Salvador, BA, Brasil *Laboratoire Marcel Merieux, Avenue Tony Garnier, Lyon, France Myofibroblasts, cells with intermediate features between smooth muscle cells and fibroblasts, have been described as an important cellular component of schistosomal portal fibrosis. The origin, distribu- tion and fate of myofibroblasts were investigated by means of light, fluorescent, immunoenzymatic and ultrastructural techniques in wedge liver biopsies from 68 patients with the hepatosplenic form of schistosomiasis. Results demonstrated that the presence of myofibroblasts varied considerably from case to case and was always related to smooth muscle cell dispersion, which occurred around medium- sized damaged portal vein branches. By sequential observation of several cases, it was evident that myofibroblasts derived by differentiation of vascular smooth muscle and gradually tended to disappear, some of them further differentiating into fibroblasts. Thus, in schistosomal pipestem fibrosis myofibroblasts appear as transient cells, focally accumulated around damaged portal vein branches, and do not seem to have by themselves any important participation in the pathogenesis of hepatosplenic schistoso- miasis. Key words: myofibroblast - schistosomiasis - pipestem fibrosis - liver The characteristic -
Development and Characterisation of 3D Skeletal Muscle Constructs Under Defined Mechanical Regulation
Development and Characterisation of 3D Skeletal Muscle Constructs under Defined Mechanical Regulation By Umber Cheema, B.Sc (Hons) UCL A thesis submitted in partial fulfilment for the Degree of Doctor of Philosophy Royal Free and University College Medical School July 2004 Department of Surgery, Charles Bell House, 64 Riding House Street, London W1W 7EJ. Department of Anatomy and Developmental Biology, Royal Free and University College Medical school, Royal Free Campus, Rowland Hill street, London NW2 2PF 1 UMI Number: U591876 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U591876 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements I would like to thank my primary supervisor, Robert Brown, for all his help, encouragement, guidance and support over the course of my studies. He has helped make this whole learning experience a truly enjoyable one. I am also deeply thankful for the support of my second supervisor, Geoffrey Goldspink, who has given me a sound understanding of muscle and for giving me the opportunity to study. I would like to thank all the staff and students I have had the privilege of working with. -
Fibroblasts and Myofibroblasts in Wound Healing: Force Generation
Journal of Tissue Viability (2011) 20, 108e120 www.elsevier.com/locate/jtv Basic research Fibroblasts and myofibroblasts in wound healing: Force generation and measurement Bin Li a, James H.-C. Wang b,* a Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007, China b MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, 210 Lothrop St, BST E1640, Pittsburgh, PA 15213, USA KEYWORDS Abstract Fibroblasts are one of the most abundant cell types in connective Fibroblasts; tissues. These cells are responsible for tissue homeostasis under normal physiolog- Myofibroblasts; ical conditions. When tissues are injured, fibroblasts become activated and differ- Wounds; entiate into myofibroblasts, which generate large contractions and actively Contraction; produce extracellular matrix (ECM) proteins to facilitate wound closure. Both fibro- Measurement blasts and myofibroblasts play a critical role in wound healing by generating trac- tion and contractile forces, respectively, to enhance wound contraction. This review focuses on the mechanisms of force generation in fibroblasts and myofibro- blasts and techniques for measuring such cellular forces. Such a topic was chosen specifically because of the dual effects that fibroblasts/myofibroblasts have in wound healing processe a suitable amount of force generation and matrix deposi- tion is beneficial for wound healing; excessive force and matrix production, however, result in tissue scarring and even malfunction of repaired tissues. There- fore, understanding how forces are generated in these cells and knowing exactly how much force they produce may guide the development of optimal protocols for more effective treatment of tissue wounds in clinical settings. ª 2009 Tissue Viability Society. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Medicine, Health and Biological Sciences Pancreatic Research Group An investigation into soluble growth factors of TIMP-1, IGF-1 and Insulin on Pancreatic stellate cell survival Dr Manish Patel DM Thesis February 2014 University of Southampton An investigation into soluble growth factors of TIMP-1, IGF-1 and Insulin on Pancreatic stellate cell survival Faculty of Medicine, Health and Biological Sciences During pancreatic injury, the pancreatic stellate cell(PSC) become activated to a myofibroblast-like phenotype, proliferate and are known to be the major source of matrix which characterise pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. Activated PSC also express matrix degrading metalloproteinases(MMPs) and their tissue inhibitors(TIMPs). Previous work has demonstrated that during spontaneous recovery from experimental liver fibrosis after 4 weeks of carbon tetrachloride injections, there is a fall in the expression of TIMP-1, a loss of the hepatic stellate cells (HSCs) by apoptosis, and an increase in liver collagenolytic activity with the return of the liver to a near normal histology. -
Tumor Microenvironment Participates in Metastasis of Pancreatic Cancer Bo Ren, Ming Cui, Gang Yang, Huanyu Wang, Mengyu Feng, Lei You*† and Yupei Zhao*†
Ren et al. Molecular Cancer (2018) 17:108 https://doi.org/10.1186/s12943-018-0858-1 REVIEW Open Access Tumor microenvironment participates in metastasis of pancreatic cancer Bo Ren, Ming Cui, Gang Yang, Huanyu Wang, Mengyu Feng, Lei You*† and Yupei Zhao*† Abstract Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial- mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival. Keywords: Pancreatic cancer, Tumor microenvironment, Desmoplasia, Immunosuppression, -
Enhanced Upregulation of Smooth Muscle Related Transcripts by Tgfb2 in Asthmatic (Myo) Fibroblasts J Wicks, H M Haitchi, S T Holgate, D E Davies, R M Powell
313 ASTHMA Thorax: first published as 10.1136/thx.2005.050005 on 31 January 2006. Downloaded from Enhanced upregulation of smooth muscle related transcripts by TGFb2 in asthmatic (myo) fibroblasts J Wicks, H M Haitchi, S T Holgate, D E Davies, R M Powell ............................................................................................................................... Thorax 2006;61:313–319. doi: 10.1136/thx.2005.050005 Background: Transforming growth factor beta (TGFb) upregulates a number of smooth muscle specific genes in (myo)fibroblasts. As asthma is characterised by an increase in airway smooth muscle, we postulated that TGFb2 favours differentiation of asthmatic (myo)fibroblasts towards a smooth muscle phenotype. Methods: Primary fibroblasts were grown from bronchial biopsy specimens from normal (n = 6) and asthmatic (n = 7) donors and treated with TGFb2 to induce myofibroblast differentiation. The most stable genes for normalisation were identified using RT-qPCR and the geNorm software applied to a panel of 12 See end of article for authors’ affiliations ‘‘housekeeping’’ genes. Expression of a-smooth muscle actin (aSMA), heavy chain myosin (HCM), ....................... calponin 1 (CPN 1), desmin, and c-actin were measured by RT-qPCR. Protein expression was assessed by immunocytochemistry and western blotting. Correspondence to: Dr R M Powell, The Brooke Results: Phospholipase A2 and ubiquitin C were identified as the most stably expressed and practically Laboratory, Level F, South useful genes for normalisation of gene expression during myofibroblast differentiation. TGFb2 induced Block, Southampton mRNA expression for all five smooth muscle related transcripts; aSMA, HCM and CPN 1 protein were also General Hospital, Southampton SO16 6YD, increased but desmin protein was not detectable. Although there was no difference in basal expression, UK; [email protected] HCM, CPN 1 and desmin were induced to a significantly greater extent in asthmatic fibroblasts than in those from normal controls (p = 0.041 and 0.011, respectively).