Moss Rose, Portulaca Grandiflora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relationships Among Native and Alien Plants on Pacific Islands with and Without Significant Human Disturbance and Feral Ungulates
RELATIONSHIPS AMONG NATIVE AND ALIEN PLANTS ON PACIFIC ISLANDS WITH AND WITHOUT SIGNIFICANT HUMAN DISTURBANCE AND FERAL UNGULATES Mark D. Merlin and James 0. Juvik ABSTRACT The native plants of remote tropical islands have been frequently characterized as poor competitors against seemingly more aggressive alien species.. Does this "weak competitor" characterization relate to some real adaptive consequences of island isolation and endemism, or does the generally concurrent presence of introduced ungulates and other forms of recurrent human disturbance also act to encourage alien plant dominance? A comparison of tropical islands with and without introduced ungulates suggests that some insular plant species competitively resist alien displacement in the absence of ungulates. INTRODUCTION For millions of years remote tropical islands in the Pacific Ocean have provided a variety of ecological opportunities for plant species that reached them through long-distance dispersal mechanisms. Many species that successfully established themselves on far-flung oceanic islands gave rise to extraordinary endemic forms, examples of adaptive radiation, and unusual adaptive shifts. Evolutionary developments occurred on isolated islands largely because of the limited numbers and kinds of colonizing taxa and varying environmental diversity within islands or groups of islands. Among the structural and physiological adaptations that frequently occur in remote island environments is the disappearance of typical defensive mechanisms such as poisons, strong odors, thorns, deep tap roots, and tough stems and branches in insular plant species. Some of these adaptations left many species especially vulnerable to a variety of alien ungulates introduced in the historic period (Fosberg 1965; Mangenot 1965; Mueller-Dombois 1975). In the Hawaiian Islands, for example, only a very small fraction of the endemic species of plants produce poisons, thorns, or other defensive strategies against herbivory (Carlquist 1974, 1980). -
Sesuvium Portulacastrum (L.) L
Sesuvium portulacastrum (L.) L. Sea Purslane (Portulaca portulacastrum) Other Common Names: Cenicilla, Shoreline Sea Purslane, Shoreline Purslane. Family: Aizoaceae, subfamily Sesuvioideae. Cold Hardiness: Not well documented, but plants are winter hardy in USDA zones 9(8b) to 13, with shoots damaged by temperatures below the upper to mid-20°F, while established root systems may survive in mulched or sheltered locations in warmer parts of USDA zone 8b. Foliage: Evergreen, alternate, simple succulent leaves are up to about 2 long and more or less cylindrical or flattened oblong to narrowly oblanceolate, tapering to point; bases tend to clasp the stems; foliage is generally reminiscent of a robust coarse textured moss rose (Portulaca grandiflora); in cool weather or when plants are under stress, the foliage takes on a reddish cast, but is otherwise a strong dark green color. Flower: Small ¾diameter solitary star-shaped flowers are borne on ¼ long peduncles in the axils of the leaves; showy portions of the flowers are the white, pinkish purple to pale purple, or bicolor interior of the sepals; numerous stamens surround a single pistil; flowers occur whenever temperature conditions permit, but are small and scattered in the canopy minimizing their aesthetic contributions. Fruit: Aesthetically inconsequential small ¼ long conical capsules develop with tiny smooth shiny black seeds that are shaken out by the wind after the lid-like top of the capsule matures and is lost. Stem / Bark: Stems — stems are snaky, long, rope-like, and mostly prostrate or pendent, although some genotypes are erect for brief periods of time prior to being weighted down to the ground as they grow; stems are thickened and succulent, nearly round in cross-section and light green, green, or reddish on new stems, these typically mature to a dark green as stems age; Buds — the tiny, foliose buds do not develop bud scales; buds are usually a similar color as the stems; Bark — not applicable. -
Placer Vineyards Specific Plan Placer County, California
Placer Vineyards Specific Plan Placer County, California Appendix B: Recommended Plant List Amended January 2015 Approved July 2007 R mECOm ENDED PlANt liSt APPENDIX B: RECOMMENDED PLANT LIST The list of plants below are recommended for use in Placer Vineyards within the design of its open space areas, landscape buffer corridors, streetscapes, gateways and parks. Plants similar to those listed in the table may also be substituted at the discretion of the County. OPEN SPACE Botanical Name Common Name Distribution Percentage Upland-Savanna TREES Aesculus californica California Buckeye 15% Quercus douglasii Blue Oak 15% Quercus lobata Valley Oak 40% Quercus wislizenii Interior Live Oak 15% Umbellularia california California Laurel 15% 100% SHRUBS Arctostaphylos sp Manzanita 15% Artemisia californica California Sagebrush 10% Ceanothus gloriosus Point Reyes Creeper 30% Ceanothus sp. California Lilac 10% Heteromeles arbutifolia Toyon 20% Rhamnus ilicifolia Hollyleaf Redberry 15% 100% GROUNDCOVER Bromus carinatus California Brome 15% Hordeum brachyantherum Meadow Barley 15% Muhlenbergia rigens Deergrass 40% Nassella pulchra Purple Needlegrass 15% Lupinus polyphyllus Blue Lupine 15% 100% January 2015 Placer Vineyards Specific Plan B-1 R mECOm ENDED PlANt liSt OPEN SPACE Botanical Name Common Name Distribution Percentage Riparian Woodland (2- to 5-year event creek flow) TREES Acer negundo Boxelder 5% Alnus rhombifolia White Alder 5% Fraxinus latifolia Oregon Ash 10% Populus fremontii Fremont Cottonwood 25% Quercus lobata Valley Oak 5% Salix gooddingii -
Dietary Purslane (Portulaca Oleracea L.) Promotes the Growth Performance of Broilers by Modulation of Gut Microbiota
Wang et al. AMB Expr (2021) 11:31 https://doi.org/10.1186/s13568-021-01190-z ORIGINAL ARTICLE Open Access Dietary purslane (Portulaca oleracea L.) promotes the growth performance of broilers by modulation of gut microbiota Cong Wang1, Qing Liu1,2, Fengchun Ye3, Hongbo Tang1, Yanpeng Xiong1, Yongfei Wu1, Luping Wang1, Xuanbiao Feng1, Shuiyin Zhang1,2, Yongmei Wan1 and Jianhua Huang1,2* Abstract Purslane is a widespread wild vegetable with both medicinal and edible properties. It is highly appreciated for its high nutritional value and is also considered as a high-quality feed resource for livestock and poultry. In this study, Sanhuang broilers were used to investigate the efect of feeding purslane diets on the growth performance in broil- ers and their gut microbiota. A total of 48 birds with good growth and uniform weight were selected and randomly allocated to four treatment groups A (control), B, C and D. Dietary treatments were fed with basal diet without purslane and diets containing 1%, 2% and 3% purslane. The 16S rDNA was amplifed by PCR and sequenced using the Illumina HiSeq platform to analyze the composition and diversity of gut microbiota in the four sets of samples. The results showed that dietary inclusion of 2% and 3% purslane could signifcantly improve the growth performance and reduce the feed conversion ratio. Microbial diversity analysis indicated that the composition of gut microbiota of San- huang broilers mainly included Gallibacterium, Bacteroides and Escherichia-Shigella, etc. As the content of purslane was increased, the abundance of Lactobacillus increased signifcantly, and Escherichia-Shigella decreased. LEfSe analysis revealed that Bacteroides_caecigallinarum, Lachnospiraceae, Lactobacillales and Firmicutes had signifcant diferences compared with the control group. -
The Supramolecular Organization of Self-Assembling Chlorosomal Bacteriochlorophyll C, D,Ore Mimics
The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d,ore mimics Tobias Jochum*†, Chilla Malla Reddy†‡, Andreas Eichho¨ fer‡, Gernot Buth*, Je¸drzej Szmytkowski§¶, Heinz Kalt§¶, David Moss*, and Teodor Silviu Balaban‡¶ʈ *Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; ‡Institute for Nanotechnology, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; §Institute of Applied Physics, Karlsruhe Institute of Technology, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany; and ¶Center for Functional Nanostructures, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany Edited by James R. Norris, University of Chicago, Chicago, IL, and accepted by the Editorial Board July 18, 2008 (received for review March 22, 2008) Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting direct structural evidence from x-ray single crystal structures, the pigments of green photosynthetic bacteria that self-assemble into exact nature of BChl superstructures remain elusive and these nanostructures within the chlorosomes forming the most efficient have been controversially discussed in the literature (1–3, 7, antennas of photosynthetic organisms. All previous models of the 11–17). It is now generally accepted that the main feature of chlorosomal antennae, which are quite controversially discussed chlorosomes is the self-assembly of BChls and that these pig- because no single crystals could be grown so far from these or- ments are not bound by a rigid protein matrix as is the case of ganelles, involve a strong hydrogen-bonding interaction between the other, well characterized light-harvesting systems (1). Small- 31 hydroxyl group and the 131 carbonyl group. -
Polyploid Breeding in Portulaca Grandiflora L
Cytologia 44: 167-174, 1979 Polyploid Breeding in Portulaca grandiflora L. A. K. Singh Plant Cytogenetics and Breeding Laboratory, B.S.N.V. Degree College, Lucknow (U.P.), India Received June 13, 1977 Portulaca grandiflora a popular annual ornamental of family Portulacaceae produces beautiful blooms during summer in a wide range of attractive colours. It is commonly known as "9 'O' clock" plant. This species was included in the ornamental breeding programme. This paper deals with the coichicine induced autoploids in pink coloured variety. Materials and methods Seeds of Portulaca grandiflora were obtained from local sources and sown in pots. As heterozygosity at diploid level could be useful in polyploid breeding no effort was made to purify the variety through selfing. Shoot tips of young seedlings were treated with 0.2% aqueous coichicine for 15 hours. Polyploids thus raised were planted in pots with suitable controls and when flowering began, buds of proper size were fixed in 1:3 acetic alcohol fortified with iron. The anthers were squashed in acetocarmine for cytological investigations. Observations Colchicine treatment checked the growth of young seedlings for 2 days. first formed leaves after treatment were thicker, longer and broader than controls. Growth of polyploids was slow and flowering was delayed by 10 days. In tetraploids there was increase in size of leaf, flower, thickness of stem, number of branches, height and spread of plant; size of stomata, anther, gynoecium and pollen grains. Fl owers of polyploids lasted longer and remained open for longer duration. The tetraploids and diploids had 25.6 and 5.2% pollen sterility. -
Chassahowitzka Chassahowitzka Plan Comprehensive Conservation
U.S. Fish & Wildlife Service Chassahowitzka NationalWildlifeRefuge Chassahowitzka National Wildlife Refuge Refuge Manager: Michael Lusk, (Project Leader) 1502 S.E. Kings Bay Drive Crystal River, FL 34429 Phone: (352) 563-2088 / ext. 202 Fax: (352) 795-7961 E-mail: [email protected] U.S. Fish & Wildlife Service 1 800/344 WILD http://www.fws.gov Chassahowitzka National Wildlife Refuge Comprehensive ConservationPlan September 2012 Comprehensive Conservation Plan USFWS Photos Photo Credits: Operation Migration, by Keith Ramos Dog Island, by Amber Breland Chass Aerial, by Joyce Kleen Comprehensive Conservation Plans provide long-term guidance for manage- ment decisions; set forth goals, objectives, and strategies needed to accom- plish refuge purposes; and identify the Fish and Wildlife Service’s best esti- mate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and, as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute a commitment for staffing increases, operational and maintenance increases, or funding for future land acquisition. Chassahowitzka National Wildlife Refuge Comprehensive Conservation Plan U.S. Department of the Interior Fish and Wildlife Service Southeast Region September 2012 COMPREHENSIVE CONSERVATION PLAN CHASSAHOWITZKA NATIONAL WILDLIFE REFUGE Citrus and Hernando Counties, Florida U.S. Department of the Interior Fish and Wildlife Service Southeast Region Atlanta, Georgia September -
Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3. -
Review on Sea Purslane JPP 2015; 3(4): 22-24 Received: 20-11-2014 Accepted: 02-12-2014 Manbir Kaur, Nitika
Journal of Pharmacognosy and Phytochemistry 2015; 3(5): 22-24 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Review on Sea purslane JPP 2015; 3(4): 22-24 Received: 20-11-2014 Accepted: 02-12-2014 Manbir Kaur, Nitika Abstract Manbir Kaur Sea purslane is a creeping, ornamental plant of family Aizoaceae. It is a perennial herb that grows Khalsa College of Pharmacy, throughout the world. Preliminary phytochemical screening of leaf showed the presence of alkaloid, Amritsar, Punjab, India. coumarin, flavonoid, phenol, steroid, tannins, terpenoid, and sugar in the different extracts. The plant Nitika possess broad spectrum activity against gram positive and gram negative bacteria as well as significant Khalsa College of Pharmacy, antifungal and antioxidant activity. It possess a number of bioactive constituents like Phytol, Squalene, Amritsar, Punjab, India. Vitamin E, Benzoic acid, Hexadecanoic acid, ethyl ester, Oleic acid, eicosyl ester. Keywords: Sea purslane, Sesuvium portulacastrum, Aizoaceae 1. Introduction There are twelve different species in the genus Sesuvium which are distributed in different parts of globe. A short taproot, numerous seeds, 2–5 stigmas, stem with adventitious roots at the nodes and uniflorous inflorescences are considered/believed the main features of the genus. Sesuvium portulacastrum L. (seapurslane) belonging to family Aizoaceae is one of the fast growing, herbaceous, perennial, dichotomous plant of this genus. Sesuvium portulacastrum (godabari), was first published in 1953 as Portulaca portulacastrum by Carl Linnaeus. After six years Linnaeus displaced Portulaca into Sesuvium and it has remained same name ever since. Sesuvium portulacastrum also known as shoreline purslane or sea purslane is a sprawling perennial herb that can exist under stress conditions. -
Part IX – Appendices
Monterey Bay National Marine Sanctuary – Proposed Action Plans Part IX – Appendices Monterey Bay Sanctuary Advisory Council Membership List of Acronyms 445 Monterey Bay National Marine Sanctuary – Proposed Action Plans Appendix 1 – Sanctuary Advisory Council Membership Non-Governmental Members ------------------------------------------------------------------------ Agriculture (Primary & SAC Vice Chair) Mr. Richard Nutter [email protected] ------------------------------------------------------------------------ Agriculture (Alternate) Mr. Kirk Schmidt Quail Mountain Herbs 831-722-8456 [email protected] ------------------------------------------------------------------------ Business/Industry (Primary) Mr. Dave Ebert, Ph.D. Project Manager, Pacific Shark Research Center 831-771-4427 [email protected] or [email protected] ------------------------------------------------------------------------ Business/Industry (Alternate) Mr. Tony Warman 831-462-4059 [email protected] ------------------------------------------------------------------------ Conservation (Primary) Ms. Vicki Nichols Director of Research & Policy Save Our Shores 831-462-5660 [email protected] ------------------------------------------------------------------------ Conservation (Alternate) Ms. Kaitilin Gaffney Central Coast Program Director The Ocean Conservancy 831-425-1363 [email protected] ------------------------------------------------------------------------ Diving (Primary) Mr. Frank Degnan CSUMB [email protected] ------------------------------------------------------------------------ -
Seedless Plants Key Concept Seedless Plants Do Not Produce Seeds 2 but Are Well Adapted for Reproduction and Survival
Seedless Plants Key Concept Seedless plants do not produce seeds 2 but are well adapted for reproduction and survival. What You Will Learn When you think of plants, you probably think of plants, • Nonvascular plants do not have such as trees and flowers, that make seeds. But two groups of specialized vascular tissues. plants don’t make seeds. The two groups of seedless plants are • Seedless vascular plants have specialized vascular tissues. nonvascular plants and seedless vascular plants. • Seedless plants reproduce sexually and asexually, but they need water Nonvascular Plants to reproduce. Mosses, liverworts, and hornworts do not have vascular • Seedless plants have two stages tissue to transport water and nutrients. Each cell of the plant in their life cycle. must get water from the environment or from a nearby cell. So, Why It Matters nonvascular plants usually live in places that are damp. Also, Seedless plants play many roles in nonvascular plants are small. They grow on soil, the bark of the environment, including helping to form soil and preventing erosion. trees, and rocks. Mosses, liverworts, and hornworts don’t have true stems, roots, or leaves. They do, however, have structures Vocabulary that carry out the activities of stems, roots, and leaves. • rhizoid • rhizome Mosses Large groups of mosses cover soil or rocks with a mat of Graphic Organizer In your Science tiny green plants. Mosses have leafy stalks and rhizoids. A Journal, create a Venn Diagram that rhizoid is a rootlike structure that holds nonvascular plants in compares vascular plants and nonvas- place. Rhizoids help the plants get water and nutrients. -
Comparative Pharmacognostic Studies on Three Species of Portulaca
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4), 806-816 ISSN: 0975-4873 Research Article Comparative Pharmacognostic Studies on Three Species of Portulaca *Silvia Netala1, Asha Priya M2, Pravallika R3, Naga Tejasri S3, Sumaiya Shabreen Md3, Nandini Kumari S3 1Department of Pharmacognosy, Shri Vishnu College of Pharmacy, Bhimavaram, India. 2 Department of Biotechnology, Shri Vishnu College of Pharmacy, Bhimavaram, India. 3Shri Vishnu College of Pharmacy, Bhimavaram, India. Available Online: 21st November, 2014 ABSTRACT To compare the structural features and physicochemical properties of three species of Portulaca. Methods: Different parts of Portulaca were examined for macroscopical, microscopical characters. Physicochemical, phytochemical and fluorescence analysis of the plant material was performed according to the methods of standardization recommended by World Health Organization. Results: The plants are succulent, prostrate herbs. Usually roots at the nodes of the stem. Leaves are opposite with paracytic stomata and characteristic Kranz tissue found in C-4 plants. Abundant calcium oxalate crystals are present in all vegetative parts of the plant. Quantitative determinations like stomatal number, stomatal index and vein islet number were performed on leaf tissue. Qualitative phytochemical screening revealed the presence of alkaloids, carbohydrates, saponins, steroids and triterpenoids. Conclusions: The results of the study could be useful in setting quality parameters for the identification and preparation of a monograph. Key words: Portulaca, physicochemical, standardization, Kranz tissue, quantitative. INTRODUCTION Preparation of extract: The powdered plant material was Genus Portulaca (Purslane) is an extremely tough plant extracted with methanol on a Soxhlet apparatus (Borosil that thrives in adverse conditions and belongs to the Glass Works Ltd, Worli, Mumbai) for 48 h.