Voice-Leading Patterns and Interval Collections in Late Shostakovich : Symphony No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theory Placement Examination (D
SAMPLE Placement Exam for Incoming Grads Name: _______________________ (Compiled by David Bashwiner, University of New Mexico, June 2013) WRITTEN EXAM I. Scales Notate the following scales using accidentals but no key signatures. Write the scale in both ascending and descending forms only if they differ. B major F melodic minor C-sharp harmonic minor II. Key Signatures Notate the following key signatures on both staves. E-flat minor F-sharp major Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) III. Intervals Identify the specific interval between the given pitches (e.g., m2, M2, d5, P5, A5). Interval: ________ ________ ________ ________ ________ Note: the sharp is on the A, not the G. Interval: ________ ________ ________ ________ ________ IV. Rhythm and Meter Write the following rhythmic series first in 3/4 and then in 6/8. You may have to break larger durations into smaller ones connected by ties. Make sure to use beams and ties to clarify the meter (i.e. divide six-eight bars into two, and divide three-four bars into three). 2 Sample Graduate Theory Placement Examination (D. Bashwiner, UNM, 2013) V. Triads and Seventh Chords A. For each of the following sonorities, indicate the root of the chord, its quality, and its figured bass (being sure to include any necessary accidentals in the figures). For quality of chord use the following abbreviations: M=major, m=minor, d=diminished, A=augmented, MM=major-major (major triad with a major seventh), Mm=major-minor, mm=minor-minor, dm=diminished-minor (half-diminished), dd=fully diminished. Root: Quality: Figured Bass: B. -
Diatonic-Collection Disruption in the Melodic Material of Alban Berg‟S Op
Michael Schnitzius Diatonic-Collection Disruption in the Melodic Material of Alban Berg‟s Op. 5, no. 2 The pre-serial Expressionist music of the early twentieth century composed by Arnold Schoenberg and his pupils, most notably Alban Berg and Anton Webern, has famously provoked many music-analytical dilemmas that have, themselves, spawned a wide array of new analytical approaches over the last hundred years. Schoenberg‟s own published contributions to the analytical understanding of this cryptic musical style are often vague, at best, and tend to describe musical effects without clearly explaining the means used to create them. His concept of “the emancipation of the dissonance” has become a well known musical idea, and, as Schoenberg describes the pre-serial music of his school, “a style based on [the premise of „the emancipation of the dissonance‟] treats dissonances like consonances and renounces a tonal center.”1 The free treatment of dissonance and the renunciation of a tonal center are musical effects that are simple to observe in the pre-serial music of Schoenberg, Berg, and Webern, and yet the specific means employed in this repertoire for avoiding the establishment of a perceived tonal center are difficult to describe. Both Allen Forte‟s “Pitch-Class Set Theory” and the more recent approach of Joseph Straus‟s “Atonal Voice Leading” provide excellently specific means of describing the relationships of segmented musical ideas with one another. However, the question remains: why are these segmented ideas the types of musical ideas that the composer wanted to use, and what role do they play in renouncing a tonal center? Furthermore, how does the renunciation of a tonal center contribute to the positive construction of the musical language, if at all? 1 Arnold Schoenberg, “Composition with Twelve Tones” (delivered as a lecture at the University of California at Las Angeles, March 26, 1941), in Style and Idea, ed. -
MTO 10.1: Wibberley, Syntonic Tuning
Volume 10, Number 1, February 2004 Copyright © 2004 Society for Music Theory Roger Wibberley KEYWORDS: Aristoxenus, comma, Ganassi, Jachet, Josquin, Ptolemy, Rore, tetrachord, Vesper-Psalms, Willaert, Zarlino ABSTRACT: This Essay makes at the outset an important (if somewhat controversial) assumption. This is that Syntonic tuning (Just Intonation) is not—though often presumed to be so—primarily what might be termed “a performer’s art.” On the contrary it is a composer’s art. As with the work of any composer from any period, it is the performer’s duty to render the music according to the composer’s wishes as shown through the evidence. Such evidence may be indirect (perhaps documentary) or it may be explicitly structural (to be revealed through analysis). What will be clear is the fallacy of assuming that Just Intonation can (or should) be applied to any music rather than only to that which was specifically designed by the composer for the purpose. How one can deduce whether a particular composer did, or did not, have the sound world of Just Intonation (henceforward referred to as “JI”) in mind when composing will also be explored together with a supporting analytical rationale. Musical soundscape (especially where voices are concerned) means, of course, incalculably more than mere “accurate intonation of pitches” (which alone is the focus of this essay): its color derives not only from pitch combination, but more importantly from the interplay of vocal timbres. These arise from the diverse vowel sounds and consonants that give life, color and expression. The audio examples provided here are therefore to be regarded as “playbacks” and no claim is being implied or intended that they in any way stand up as “performances.” Some care, nonetheless, has been taken to make them as acceptable as is possible with computer-generated sounds. -
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings. -
Construction and Verification of the Scale Detection Method for Traditional Japanese Music – a Method Based on Pitch Sequence of Musical Scales –
International Journal of Affective Engineering Vol.12 No.2 pp.309-315 (2013) Special Issue on KEER 2012 ORIGINAL ARTICLE Construction and Verification of the Scale Detection Method for Traditional Japanese Music – A Method Based on Pitch Sequence of Musical Scales – Akihiro KAWASE Department of Corpus Studies, National Institute for Japanese Language and Linguistics, 10-2 Midori-cho, Tachikawa City, Tokyo 190-8561, Japan Abstract: In this study, we propose a method for automatically detecting musical scales from Japanese musical pieces. A scale is a series of musical notes in ascending or descending order, which is an important element for describing the tonal system (Tonesystem) and capturing the characteristics of the music. The study of scale theory has a long history. Many scale theories for Japanese music have been designed up until this point. Out of these, we chose to formulate a scale detection method based on Seiichi Tokawa’s scale theories for traditional Japanese music, because Tokawa’s scale theories provide a versatile system that covers various conventional scale theories. Since Tokawa did not describe any of his scale detection procedures in detail, we started by analyzing his theories and understanding their characteristics. Based on the findings, we constructed the scale detection method and implemented it in the Java Runtime Environment. Specifically, we sampled 1,794 works from the Nihon Min-yo Taikan (Anthology of Japanese Folk Songs, 1944-1993), and performed the method. We compared the detection results with traditional research results in order to verify the detection method. If the various scales of Japanese music can be automatically detected, it will facilitate the work of specifying scales, which promotes the humanities analysis of Japanese music. -
MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions. -
Major and Minor Scales Half and Whole Steps
Dr. Barbara Murphy University of Tennessee School of Music MAJOR AND MINOR SCALES HALF AND WHOLE STEPS: half-step - two keys (and therefore notes/pitches) that are adjacent on the piano keyboard whole-step - two keys (and therefore notes/pitches) that have another key in between chromatic half-step -- a half step written as two of the same note with different accidentals (e.g., F-F#) diatonic half-step -- a half step that uses two different note names (e.g., F#-G) chromatic half step diatonic half step SCALES: A scale is a stepwise arrangement of notes/pitches contained within an octave. Major and minor scales contain seven notes or scale degrees. A scale degree is designated by an Arabic numeral with a cap (^) which indicate the position of the note within the scale. Each scale degree has a name and solfege syllable: SCALE DEGREE NAME SOLFEGE 1 tonic do 2 supertonic re 3 mediant mi 4 subdominant fa 5 dominant sol 6 submediant la 7 leading tone ti MAJOR SCALES: A major scale is a scale that has half steps (H) between scale degrees 3-4 and 7-8 and whole steps between all other pairs of notes. 1 2 3 4 5 6 7 8 W W H W W W H TETRACHORDS: A tetrachord is a group of four notes in a scale. There are two tetrachords in the major scale, each with the same order half- and whole-steps (W-W-H). Therefore, a tetrachord consisting of W-W-H can be the top tetrachord or the bottom tetrachord of a major scale. -
Chromatic Sequences
CHAPTER 30 Melodic and Harmonic Symmetry Combine: Chromatic Sequences Distinctions Between Diatonic and Chromatic Sequences Sequences are paradoxical musical processes. At the surface level they provide rapid harmonic rhythm, yet at a deeper level they function to suspend tonal motion and prolong an underlying harmony. Tonal sequences move up and down the diatonic scale using scale degrees as stepping-stones. In this chapter, we will explore the consequences of transferring the sequential motions you learned in Chapter 17 from the asymmetry of the diatonic scale to the symmetrical tonal patterns of the nineteenth century. You will likely notice many similarities of behavior between these new chromatic sequences and the old diatonic ones, but there are differences as well. For instance, the stepping-stones for chromatic sequences are no longer the major and minor scales. Furthermore, the chord qualities of each individual harmony inside a chromatic sequence tend to exhibit more homogeneity. Whereas in the past you may have expected major, minor, and diminished chords to alternate inside a diatonic sequence, in the chromatic realm it is not uncommon for all the chords in a sequence to manifest the same quality. EXAMPLE 30.1 Comparison of Diatonic and Chromatic Forms of the D3 ("Pachelbel") Sequence A. 624 CHAPTER 30 MELODIC AND HARMONIC SYMMETRY COMBINE 625 B. Consider Example 30.1A, which contains the D3 ( -4/ +2)-or "descending 5-6"-sequence. The sequence is strongly goal directed (progressing to ii) and diatonic (its harmonies are diatonic to G major). Chord qualities and distances are not consistent, since they conform to the asymmetry of G major. -
The Perceptual Attraction of Pre-Dominant Chords 1
Running Head: THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 1 The Perceptual Attraction of Pre-Dominant Chords Jenine Brown1, Daphne Tan2, David John Baker3 1Peabody Institute of The Johns Hopkins University 2University of Toronto 3Goldsmiths, University of London [ACCEPTED AT MUSIC PERCEPTION IN APRIL 2021] Author Note Jenine Brown, Department of Music Theory, Peabody Institute of the Johns Hopkins University, Baltimore, MD, USA; Daphne Tan, Faculty of Music, University of Toronto, Toronto, ON, Canada; David John Baker, Department of Computing, Goldsmiths, University of London, London, United Kingdom. Corresponding Author: Jenine Brown, Peabody Institute of The John Hopkins University, 1 E. Mt. Vernon Pl., Baltimore, MD, 21202, [email protected] 1 THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 2 Abstract Among the three primary tonal functions described in modern theory textbooks, the pre-dominant has the highest number of representative chords. We posit that one unifying feature of the pre-dominant function is its attraction to V, and the experiment reported here investigates factors that may contribute to this perception. Participants were junior/senior music majors, freshman music majors, and people from the general population recruited on Prolific.co. In each trial four Shepard-tone sounds in the key of C were presented: 1) the tonic note, 2) one of 31 different chords, 3) the dominant triad, and 4) the tonic note. Participants rated the strength of attraction between the second and third chords. Across all individuals, diatonic and chromatic pre-dominant chords were rated significantly higher than non-pre-dominant chords and bridge chords. Further, music theory training moderated this relationship, with individuals with more theory training rating pre-dominant chords as being more attracted to the dominant. -
Hexatonic Cycles
CHAPTER Two H e x a t o n i c C y c l e s Chapter 1 proposed that triads could be related by voice leading, independently of roots, diatonic collections, and other central premises of classical theory. Th is chapter pursues that proposal, considering two triads to be closely related if they share two common tones and their remaining tones are separated by semitone. Motion between them thus involves a single unit of work. Positioning each triad beside its closest relations produces a preliminary map of the triadic universe. Th e map serves some analytical purposes, which are explored in this chapter. Because it is not fully connected, it will be supplemented with other relations developed in chapters 4 and 5. Th e simplicity of the model is a pedagogical advantage, as it presents a circum- scribed environment in which to develop some central concepts, terms, and modes of representation that are used throughout the book. Th e model highlights the central role of what is traditionally called the chromatic major-third relation, although that relation is theorized here without reference to harmonic roots. It draws attention to the contrary-motion property that is inherent in and exclusive to triadic pairs in that relation. Th at property, I argue, underlies the association of chromatic major-third relations with supernatural phenomena and altered states of consciousness in the early nineteenth century. Finally, the model is suffi cient to provide preliminary support for the central theoretical claim of this study: that the capacity for minimal voice leading between chords of a single type is a special property of consonant triads, resulting from their status as minimal perturbations of perfectly even augmented triads. -
Design, Harmony, and Voice Leading
From: AAAI Technical Report WS-96-03. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. Design, Harmony, and Voice Leading GarryS. Sittler University of Illinois at Urbana-Champaign Department of Computer Science Urbana, Illinois 61801 [email protected] Abstract General voice leading rules have evolved with Western This paper describes an automated design system music over time. These rules comein several categories. which harmonizes music. The goal is to take a given Some,such as the available major, minor, diminished, and melody line and produce four part harmonyaccording augmentedtriads, are dictated by the structure and the to procedures set forth by harmonization and voice pitches of the twelve notes within an octave. Others are leading techniques. Voice leading techniques provide based on preferences of what sounds pleasant to the human some guidance about how to produce a musical ear. Manyof these types of rules designate musical arrangement. Manyof these techniques, however, are situations which are prohibited. Another category could be represented by rules which specify certain situations called heuristic knowledge.Several of these rules are based which must be avoided. Thus, the principle challenge is how to determine what design choices should be on what a composer might do, and they are also good made based on what cannot be done. methods for avoiding the prohibited situations. Each category is further explained and exemplified below. Eachof the seven notes in a scale has associated with it a Introduction triad which is formed with the two notes forming intervals of a third and a fifth above it. The possible triads for a The process of automated design involves choosing major scale are as follows: appropriate values for a given set of design parameters. -
Voice Leading Rules - Cheat Sheet
Voice Leading Rules - Cheat Sheet Voice Leading Rules: Move the voices a little as possible when changing chords **Rule: Resolve 7->1 in a V chord in the outer voices. **Guideline: Keep the notes the same if you can (except in soprano). Move mostly by step. **Guideline: Avoid melodic leaps with dissonant intervals. Make each line unique **Rule: no parallel fifths/octaves (or unisons) **Rule: no hidden fifths/octaves between the outer voices **Rule: Don’t double tendency tones! **Rule: Keep upper voices within an octave of one another (i.e. soprano is within an octave of the alto, alto is within an octave of the tenor) **Guideline: No voice crossings (where one voice goes above another) or overlaps (see below) Doubling/complete chords **Guideline: Write complete chords whenever possible. **Rule: you may only leave out the fifth **Guideline: Double the root of the chord (except for diminished…) Double the fifth if it makes the voice leading smoother. Be careful with the third. Misc: **Rule: Write outer voices first – make sure they sound good together! **Guideline: Contrary motion between upper voices and bass whenever possible **Guideline: Start with a closed position chord and work out from there. **Guideline: If a pair of upper voices leap together by more than a third, rethink it… missing 3rd missing 3rd Te r r i ble Exa mp le : doubled leading tone Alto leaps too far Parallel 5ths Parallel 8ves Parallel 8ves Parallel 8ves * * doubled Piano Parallel 8ves leading tone spacing Parallel 8ves * * too many missing 3rd Parallel 8ves unisons alto is lower weird (bad) leap between than tenor (tenor) B and T * Voice overlap - where a voice jumps higher (or lower) than a neighboring voice's preceding note.