University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 Comparative Geochemical Analysis of Ordovician and Mississippian Cherts in Relation to the Northern Arkansas and the Tri-State Mississippi Valley-type Ore Districts Jonathan T. Chick University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Geology Commons, Mineral Physics Commons, and the Sedimentology Commons Citation Chick, J. T. (2020). Comparative Geochemical Analysis of Ordovician and Mississippian Cherts in Relation to the Northern Arkansas and the Tri-State Mississippi Valley-type Ore Districts. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3720 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact
[email protected]. Comparative Geochemical Analysis of Ordovician and Mississippian Cherts in Relation to the Northern Arkansas and the Tri-State Mississippi Valley-type Ore Districts A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Geology by Jonathan Chick University of Arkansas Bachelor of Science in Geology, 2013 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council ____________________________________ Walter L. Manger, Ph.D. Thesis Director ____________________________________ Adriana Potra, Ph.D. Committee Member ____________________________________ ____________________________________ Phillip D. Hays, Ph.D. Erik Pollock, M.S. Committee Member Committee Member ABSTRACT It has been hypothesized that Ordovician, Mississippian, and younger carbonate and clastic formations found within the Ouachita Basin of west-central Arkansas and northward onto the Ozark Dome have experienced interaction with hydrothermal fluids due to tectonic forces produced by the Ouachita Orogeny.