2015 Proceedings Book (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outbreak of Sheeppox in Farmed Sheep in Kyrgystan: Histological, Eletron Micro- Scopical and Molecular Characterization
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Outbreak of sheeppox in farmed sheep in Kyrgystan: Histological, eletron microscopical and molecular characterization Aldaiarov, N ; Stahel, A ; Nufer, L ; Jumakanova, Z ; Tulobaev, A ; Ruetten, M Abstract: INTRODUCTION On a farm in the Kyrgyz Republic, several dead sheep were found without any history of illness. The sheep showed several ulcerations on lips and bare-skinned areas. At necropsy the lungs showed multiple firm nodules, which were defined as pox nodules histologically. Intherumen hyperkeratotic plaques were visible. With electron microscopy pox viral particles were detected and con- firmed with q PCR as Capripoxviruses. Although all members of the Capripoxvirus genus are eradicated in western countries, this study should remind us of the classical lesions observed in poxvirus infections. DOI: https://doi.org/10.17236/sat00076 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-126889 Journal Article Published Version Originally published at: Aldaiarov, N; Stahel, A; Nufer, L; Jumakanova, Z; Tulobaev, A; Ruetten, M (2016). Outbreak of sheep- pox in farmed sheep in Kyrgystan: Histological, eletron microscopical and molecular characterization. Schweizer Archiv für Tierheilkunde, 158(7):529-532. DOI: https://doi.org/10.17236/sat00076 Fallberichte | Case reports Outbreak of sheeppox in farmed sheep in Kyrgystan: Histological, eletron micro- scopical -
CVMP Assessment Report for APOQUEL (EMEA/V/C/002688/0000) International Non-Proprietary Name: Oclacitinib Maleate
18 July 2013 EMA/481054/2013 Veterinary Medicines and Product Data Management Committee for Medicinal Products for Veterinary Use CVMP assessment report for APOQUEL (EMEA/V/C/002688/0000) International non-proprietary name: oclacitinib maleate Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8447 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. Reproduction is authorised provided the source is acknowledged. Introduction The applicant Pfizer Animal Health S.A. submitted on 26 July 2012 an application for marketing authorisation to the European Medicines Agency (The Agency) for APOQUEL, through the centralised procedure falling within Article 3(2)(a) of Regulation (EC) No 726/2004 (new active substance). During the procedure the applicant changed to Zoetis Belgium S.A. The eligibility to the centralised procedure was confirmed by the CVMP on 12 January 2012 falling under Article 3(2)(a) of Regulation (EC) No 726/2004 as APOQUEL contains a new active substance which was not authorised in the Community on the date of entry into force of the Regulation. APOQUEL film-coated tablets contain oclacitinib (as oclacitinib maleate) as the active substance. There are three different strengths of the (film-coated) tablets, containing 3.6 mg, 5.4 mg and 16 mg oclacitinib (as the maleate salt), and each is contained in blister packs (polychlorotrifluoroethylene (PCTFE)/polyvinylchloride (PVC)/aluminium) which are supplied in outer cartons containing 20 or 100 tablets. -
Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)
Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3. -
Experimental Infection and Genetic Characterization of Two Different
viruses Article Experimental Infection and Genetic Characterization of Two Different Capripox Virus Isolates in Small Ruminants Janika Wolff , Jacqueline King, Tom Moritz, Anne Pohlmann , Donata Hoffmann , Martin Beer and Bernd Hoffmann * Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; janika.wolff@fli.de (J.W.); jacqueline.king@fli.de (J.K.); [email protected] (T.M.); anne.pohlmann@fli.de (A.P.); donata.hoffmann@fli.de (D.H.); martin.beer@fli.de (M.B.) * Correspondence: Bernd.Hoffmann@fli.de; Tel.: +49-3835-17-1506 Received: 8 September 2020; Accepted: 26 September 2020; Published: 28 September 2020 Abstract: Capripox viruses, with their members “lumpy skin disease virus (LSDV)”, “goatpox virus (GTPV)” and “sheeppox virus (SPPV)”, are described as the most serious pox diseases of production animals. A GTPV isolate and a SPPV isolate were sequenced in a combined approach using nanopore MinION sequencing to obtain long reads and Illumina high throughput sequencing for short precise reads to gain full-length high-quality genome sequences. Concomitantly, sheep and goats were inoculated with SPPV and GTPV strains, respectively. During the animal trial, varying infection routes were compared: a combined intravenous and subcutaneous infection, an only intranasal infection, and the contact infection between naïve and inoculated animals. Sheep inoculated with SPPV showed no clinical signs, only a very small number of genome-positive samples and a low-level antibody reaction. In contrast, all GTPV inoculated or in-contact goats developed severe clinical signs with high viral genome loads observed in all tested matrices. -
Did Eating Human Poop Play a Role in the Evolution of Dogs?
WellBeing International WBI Studies Repository 4-24-2020 Did Eating Human Poop Play a Role in the Evolution of Dogs? Harold Herzog Animal Studies Repository Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/sc_herzog_compiss Recommended Citation Herzog, Harold, Did eating Human Poop Play a Role in the Evolution of Dogs? (2020), 'Animals and Us' Blog Posts, Psychology Today, 24 August, 118. https://www.psychologytoday.com/us/blog/animals-and- us/202008/did-eating-human-poop-play-role-in-the-evolution-dogs This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Did Eating Human Poop Play a Role in the Evolution of Dogs? The consumption of human feces may have influenced canine evolution. Posted Aug 24, 2020 Source: Photo by K. Thalhotter/123RF “Poop is central to the story of how dogs came into our lives," write Duke University dog researchers Brian Hare and Vanessa Woods in their wonderful new book, Survival of the Friendliest: Understanding Our Origins and Rediscovering Our Common Humanity. I think they may be right. Molly, our beloved Labrador retriever, certainly loved to eat poop. Sometimes she would chow down on her own feces, and at other times, she preferred excrement of the cows that lived behind our house. Mary Jean and I found this practice (coprophagia) disgusting. We were not alone. Ben Hart and his colleagues at the University of California at Davis School of Veterinary Medicine surveyed nearly 3,000 dog owners about their pet’s penchant for poop. -
Anaplasma Platys Diagnosis in Dogs
Anaplasma platys Diagnosis in Dogs: Comparison Between Morphological and Molecular Tests Renata Fernandes Ferreira, VMD, MSc1 Aloysio de Mello Figueiredo Cerqueira, VMD, MSc, DSc2 Ananda Müller Pereira, VMD1 Cecília Matheus Guimarães BSc2 Alexandre Garcia de Sá, VMD, MSc1 Fabricio da Silva Abreu, VMD, MSc1 Carlos Luiz Massard, VMD, MSc, PhD3 Nádia Regina Pereira Almosny, VMD, MSc, PhD1 1Departamento de Patologia e Clínica Veterinária Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 2Departamento de Microbiologia e Parasitologia Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 3Departamento de Parasitologia Animal Universidade Federal Rural do Rio de Janeiro Seropédica, Rio de Janeiro, Brazil KEY WORDS: Anaplasma platys, PCR, ickettsia helminthoeca (PCR1). The second inclusions stage consisted of the utilization of specific primers for the detection of the species A ABSTRACT platys (PCR2). Upon comparison of the re- Anaplasma platys is related to the appear- sults, 18.81% of the studied animals showed ance of inclusion bodies in blood platelets; positive for PCR1. For PCR2, 15.84% of the however, this may be a nonspecific occur- studied animals had a positive result. In the rence as there are nonparasitic inclusion morphological analysis of the inclusion bod- bodies within these figured elements. Aiming ies, 14.85% of the animals showed positive to validate the morphological diagnosis for for A platys. The other inclusion bodies were A platys, 101 dogs were selected due to the considered as nonspecific, therefore nega- appearance of inclusion bodies, indepen- tive. When compared to the morphological dently from suggestive parasites, which analysis, the results of the molecule analysis were submitted to polymerase chain reac- by means of the MacNemar test led to the tion (PCR) carried out in 2 stages. -
5.10.20 Final Part 1 No Prelimeary Pages
IDENTIFICATION OF NOVEL TREATMENT APPROACHES FOR HUMAN AND CANINE OSTEOSARCOMA By Ya-Ting Yang A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Comparative Medicine and Integrative Biology- Doctor of Philosophy 2020 ABSTRACT IDENTIFICATION OF NOVEL TREATMENT APPROACHES FOR HUMAN AND CANINE OSTEOSARCOMA By Ya-Ting Yang Osteosarcoma (OSA) is an aggressive neoplasm, characterized with high level of heterogeneity, high metastatic potential and poor prognosis in both humans and dogs. In this study, I used drug screening studies including existing therapeutic agents and novel compounds to identify more effective approaches to treat human and canine osteosarcoma. One of the challenges in the field of OSA is to identify optimal tools for study. A limited number of human and canine OSA cell lines are available. In this study, I established and characterized a new cell line, BZ, derived from a German shepherd dog with OSA and studied key oncogenic pathways in BZ. Our findings revealed activation of STAT3 and ERK pathways in BZ, as well as in a number of other cell lines, indicating that these two pathways are critical for cell survival and proliferation in OSA and the potential of using STAT3 and ERK inhibitors. Furthermore, I screened ten tyrosine kinase inhibitors (TKIs) on two dog and one human OSA cell lines. Among the selected TKIs, sorafenib showed promising results in effectively inhibited cell growth and migration in vitro studies. In addition, the effects of combing sorafenib with current chemotherapeutics (cisplatin, carboplatin, and doxorubicin) for OSA were investigated. Data from the combination index pointed to synergistic effects of sorafenib combined with doxorubicin and resulted in profound cell arrest at G2/M phase. -
ESCCAP Guidelines Final
ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10 -
Appendix B the Following List Represents 29 Zoonotic/Anthroponotic Pathogens Denoted As Grey-Zone Pathogens
Appendix B The following list represents 29 zoonotic/anthroponotic pathogens denoted as Grey-Zone Pathogens. These represent any pathogen where there is some evidence the dog is involved in transmission, maintenance or detection of the pathogen, but current research has not definitively proven the dog’s role at the time of this study. There were no sapronoses in this group. Of these pathogens, those that have been reported in Canada are marked with a 1. Those pathogens that have the potential to occur in Canada but have not yet been reported are marked with a 2. Bacteria Protozoa Acinetobacter baumannii 1 Babesia canis canis Borrelia turicatae 1 Babesia canis rossi Campylobacter gracilis 1 Babesia canis vogeli 1 Campylobacter lari 1 Blastocystis hominis 1 Helicobacter bizzozeronii 2 Blastocystis spp. 1 Mycoplasma canis 2 Cryptosporidium parvum 1 Mycoplasma maculosum 2 Leishmania donovani 1 Rhodococcus equi 1 Staphylococcus schleiferi coagulans Rickettsia Anaplasma platys 1 Fungi Ehrlichia chaffeensis 2 Encephalitozoon cuniculi 1 Ehrlichia ewingii 2 Encephalitozoon intestinalis 2 Enterocytozoon bieneusi 2 Viruses Reovirus MRV (Mammalian Reovirus) serotype 1 1 Helminths Reovirus MRV (Mammalian Reovirus) serotype 2 1 Ascaris lumbricoides 1 Reovirus MRV (Mammalian Reovirus) serotype 3 1 Trichinella spiralis 1 West Nile virus1 Trichuris vulpis 1 Only a portion of the information obtained in this study is presented here. Please contact the authors for additional reference material on why a pathogen was or was not included in a particular step. Appendix C The following list represents 74 zoonotic/sapronotic pathogens where the dog is involved in transmission, maintenance, or detection of the pathogen and the pathogen has been reported to have historically occurred in Canada, however, Canadian canine-specific reports are lacking (Tier 2). -
Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica
Accepted Manuscript Title: Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Author: Liliana Campos-Calderon´ Leyda Abrego-S´ anchez´ Antony Solorzano-Morales´ Alberto Alberti Gessica Tore Rosanna Zobba Ana E. Jimenez-Rocha´ Gaby Dolz PII: S1877-959X(16)30120-0 DOI: http://dx.doi.org/doi:10.1016/j.ttbdis.2016.07.015 Reference: TTBDIS 700 To appear in: Received date: 29-2-2016 Revised date: 1-7-2016 Accepted date: 24-7-2016 Please cite this article as: Campos-Calderon,´ Liliana, Abrego-S´ anchez,´ Leyda, Solorzano-Morales,´ Antony, Alberti, Alberto, Tore, Gessica, Zobba, Rosanna, Jimenez-Rocha,´ Ana E., Dolz, Gaby, Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.Ticks and Tick-borne Diseases http://dx.doi.org/10.1016/j.ttbdis.2016.07.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Liliana Campos-Calderóna, Leyda Ábrego-Sánchezb, Antony Solórzano- Moralesa, Alberto Albertic, Gessica Torec, Rosanna Zobbac, Ana E. Jiménez- Rochaa, Gaby Dolza,b,* aEscuela de Medicina Veterinaria, Universidad Nacional, Campus Benjamín Núñez, Barreal de Heredia, Costa Rica ([email protected], [email protected], [email protected]). -
Species Image of Mandible Dietary Ecology
Species Image of Mandible Dietary Ecology Acomys cahirinus Omnivore – Seeds, fruits, (Northeast African insects, food scavenged from humans, shrubs (green leaves), spiny mouse) molluscs, carrion. Omnivore - (Nowak, 1999) Aplodontia rufa Herbivore – forbs, grasses, ferns. (mountain beaver) Specialised Herbivore – (Samuels, 2009). Bathyergus suillus Herbivore – grass, sedge, roots, (Cape dune mole- bulbs, tubers. rat) Specialised Herbivore – (Samuels, 2009). Cannomys badius Herbivore – roots, bamboo, (Lesser bamboo rat) shoots, grasses. Occasional seeds and fruits. Specialised Herbivore – (Samuels, 2009). Capromys pilorides Omnivore – Bark leaves, fruits, (Desmarest’s hutia) small vertebrates, ground and tree level vegetation. Omnivore - (Nowak, 1999). Castor canadensis Herbivore – Leaves, bark, bud (North American and roots, cambium (softer tissue of trees beneath bark). Beaver) Specialised Herbivore – (Samuels, 2009). Cavia porcellus Herbivore – Leaves, roots and (Domestic guinea tubers, fruits, flowers, lettuce etc. (rely on humans). pig) Specialised Herbivore (Cavia aperea) - (Samuels, 2009). Cricetomys Omnivore – Fruits, vegetables, gambianus nuts, insects, molluscs, roots (sweet potatoes etc.). (Northern giant pouched rat) Omnivore – (Nowak, 1999). Ctenomys opimus Diet for this species has not (Highland tuco-tuco) been extensively documented. Assuming that it is like other tuco-tuco, it is a herbivore – Grasses and roots primarily. Specialised Herbivore (Ctenomys conoveri) - (Samuels, 2009). Dasyprocta (Agouti - Species unknown. Assuming -
Case Report Therapeutic Management of Chronic Generalized Demodicosis in a Pug
Advances in Animal and Veterinary Sciences. 1 (2S): 26 – 28 Special Issue–2 (Clinical Veterinary Practice– Trends) http://www.nexusacademicpublishers.com/journal/4 Case Report Therapeutic Management of Chronic Generalized Demodicosis in a Pug Neeraj Arora2*, Sukhdeep Vohra1, Satyavir Singh1, Sandeep Potliya2, Anshul Lather3, Akhil Gupta3, Devan Arora4, Davinder Singh4 1 Veterinary Parasitology; 2 Veterinary Surgery and Radiology; 3 Veterinary Microbiology; 4 Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar – 125004, Haryana. *Corresponding author: [email protected] ARTICLE HISTORY ABSTRACT Received: 2013–11–07 A two year old female pug was presented to Teaching Veterinary Clinical Complex, LLRUVAS, Revised: 2013–12–30 Hisar with the history of itching, alopecia, crust formation, haemorrhage and thickening of the Accepted: 2013–12–30 skin on face, neck, trunk and abdomen since last two months. The condition was laboratory diagnosed as chronic demodicosis and treated with amitraz and ivermectin along with supportive therapy. The female pug responded well to the treatment and recovered completely on 28th day Key Words: Amitraz, after the start of the treatment. Demodicosis, Ivermectin, Pug All copyrights reserved to Nexus® academic publishers ARTICLE CITATION: Arora N, Vohra S, Singh S, Potliya S, Lather A, Gupta A,Arora D and Davinder Singh D (2013). Therapeutic management of chronic generalized demodicosis in a pug. Adv. Anim. Vet. Sci. 1 (2S): 26 – 28. INTRODUCTION was observed in the region of face, neck, trunk and limbs Animal skin is exposed to attack by many kinds of parasites and (Figure 1). each species has a particular effect on the skin; thatcan be mild or severe.