Checklist of Birds in Oakland County
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fuzzy Simplicial Networks: a Topology-Inspired Model to Improve Task Generalization in Few-Shot Learning
Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task Generalization in Few-shot Learning Henry Kvinge∗, Zachary New∗, Nico Courts∗y, Jung H. Lee∗, Lauren A. Phillipsz, Courtney D. Corleyz, Aaron Tuor∗, Andrew Avilaz, Nathan O. Hodasz September 24, 2020 Abstract Deep learning has shown great success in settings with massive amounts of data but has struggled when data is limited. Few-shot learning algorithms, which seek to address this limitation, are designed to generalize well to new tasks with limited data. Typically, models are evaluated on unseen classes and datasets that are defined by the same fundamental task as they are trained for (e.g. category membership). One can also ask how well a model can generalize to fundamentally different tasks within a fixed dataset (for example: moving from category membership to tasks that involve detecting object orientation or quantity). To formalize this kind of shift we define a notion of independence of tasks and identify three new sets of labels for established computer vision datasets that test a model's ability to generalize to tasks which draw on orthogonal attributes in the data. We use these datasets to investigate the failure modes of metric-based few-shot models. Based on our findings, we introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data. In particular, FSN models can not only form multiple representations for a given class but can also begin to capture the low-dimensional structure which characterizes class manifolds in the encoded space of deep networks. -
ILSOLC Bird Checklist
Birding in Seguin Irma Lewis Seguin Outdoor Irma Lewis Seguin, Texas is located in south- central Texas, in an ecological area on Learning Center Seguin Outdoor Learning the boundary of Blackland Prairie to the north and the Post Oak Savannah The Seguin Outdoor Learning Center to the south and east. Most of the Center a 115-acre private, non surrounding land is in agricultural use, primarily cattle grazing, providing a -profit educational facility fairly diverse environment for birds. nestled along Geronimo Creek The Guadalupe River runs through the in northeast Seguin. Our city. Large pecan and cypress trees line the river, including the city park, facilities include a pavilion, Starcke Park, on Bus. 123 South. The natural history center, walking trail in Starcke Park East, along the confluence of Walnut Branch, environmental science center, offers good birding for warblers, blue- amphitheater, ropes course, “Education Through Experience For All Ages” birds and other passerines. Several small reservoirs located along the river nature trail, outdoor class- near town, including Lakes Dunlap, room and pond. Schools, youth McQueeney, and Placid also provide groups, sports teams, clubs, areas for waterfowl. churches and corporations enjoy our peaceful, natural Some species that are common around setting where children and Seguin may be of special interest to citizens of the community can birders from other regions. learn through discovery and Scissor-tailed Flycatchers are unique adventure common during the breeding season. Look for them on fences and telephone experiences. wires anywhere in the countryside around Seguin. Crested Caracaras are The ILSOLC is open to also common in the countryside and are Birding Hours: members, scheduled and especially visible when feeding on Monday-Friday, 8a-5p road-kill carcasses, often in the supervised groups only. -
Genomic Analyses Reveal the Origin of Domestic Ducks and Identify Different
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.933069; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic analyses reveal the origin of domestic ducks and identify different 2 genetic underpinnings of wild ducks. 3 Rui Liu1,*, Weiqing Liu2,3,*, Enguang Rong1, Lizhi Lu4, Huifang Li5, Li Chen4, Yong 4 Zhao3,6, Huabin Cao7, Wenjie Liu1, Chunhai Chen2, Guangyi Fan2,6,8, Weitao Song6, 5 Huifang Lu3, Yingshuai Sun3, Wenbin Chen2,9, Xin Liu2,6,9, Xun Xu2,6,9, Ning Li1,# 6 1State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 7 100094, China. 2BGI-Shenzhen, Shenzhen 518083, China. 3BGI-Wuhan, Wuhan 8 430075, China. 4Institute of Animal Sciences and Veterinary Medicine, Zhejiang 9 Academy of Agricultural Sciences, Hangzhou 310021, China. 5Institute of Poultry 10 Science of Jiangsu, Yangzhou 225125, China. 6BGI-Qingdao, Qingdao 266555, 11 China. 7Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal 12 Population Health, College of Animal Science and Technology, Jiangxi Agricultural 13 University, Nanchang 330045, China. 8State Key Laboratory of Quality Research in 14 Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 15 Macao, China. 9China National GeneBank-Shenzhen 16 *These authors contributed equally 17 #Corresponding authors: N.L.([email protected]) 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.933069; this version posted February 4, 2020. -
Waterfowl/Migratory Bird Hunting Regulations
2021 - 2022 Migratory Game A Bird Hunting L Regulations A S K Photo by Jamin Hunter Taylor Graphic Design by Sue Steinacher A The 2021 state duck stamp features a photograph by Jamin Hunter Taylor of a male ring-necked duck (Aythya collaris). Jamin is an Alaska-based nature photographer who specializes in hunting Alaska’s diverse avifauna through the lens of his camera. Ring-necked ducks breed throughout much of Alaska and often congregate into large flocks during fall migration. Unlike most other diving ducks, ring-necked ducks are frequently found in relatively small, shallow ponds and wetlands. The appropriateness of the bird’s common name (and scientific name “collaris”) is often questioned because, in the field, the neck ring is rarely visible. However, in hand it becomes obvious that males of the species do exhibit a chestnut-colored collar at the base of the neck. Despite their name, the species is more easily identified based on their pointed head shape and white ring around the bill. The State of Alaska is an Affirmative Action/Equal Opportunity Employer. Contact [email protected] for alternative formats of this publication. 2 LICENSE AND STAMP REQUIREMENTS Resident Hunters All Alaska residents age 18 or older must possess a hunting license to hunt in Alaska and must carry it while hunting. Resident hunters 60 years old or older may obtain a free, permanent identification card issued by the Alaska Department of Fish and Game (ADF&G). This card replaces the sport fishing, hunting, and trapping licenses. Disabled veterans qualified under AS 16.05.341 may receive a free hunting license. -
Beaks at the Bird Buffet
Beaks at the Bird Buffet Introduction A bird’s beak is a bony elongation of its skull that is covered in keratin, the same material that makes up your hair and fingernails. Birds use their beaks as tools. Beaks help birds gather food, groom their feathers, defend themselves, and build their nests. The shape of a bird’s beak gives us clues to figuring out its main source of food, as a bird’s beak is designed for eating a particular type of food. Raptors like owls, hawks, and vultures have grasping beaks. These beaks are hooked shaped which allows for tearing apart prey or carrion. Similar to a raptor’s beak, a cardinal’s beaks is a heavy thick beak that they use to crack seeds. Birds like a spoonbill have a long, flat, scooping beak that scoops up food like fish or insects in the water. Ducks also get their food from the water. Their flat shovel beaks allow them to scoop up fish or plants and then drain out water before swallowing. A hummingbird’s beak is long and thin, which allows it to reach into tight places for its food-like getting nectar out of a flower. For this activity, you will need a clothes pin, a spoon, chopsticks, and a craft stick - these are your beaks. A cup or bowl will serve as your bird’s stomach. Lay your “food” out on a table and select your first beak. See how much food you are able to pick up with your beak and move to your stomach in 30 seconds. -
Waterfowl in Iowa, Overview
STATE OF IOWA 1977 WATERFOWL IN IOWA By JACK W MUSGROVE Director DIVISION OF MUSEUM AND ARCHIVES STATE HISTORICAL DEPARTMENT and MARY R MUSGROVE Illustrated by MAYNARD F REECE Printed for STATE CONSERVATION COMMISSION DES MOINES, IOWA Copyright 1943 Copyright 1947 Copyright 1953 Copyright 1961 Copyright 1977 Published by the STATE OF IOWA Des Moines Fifth Edition FOREWORD Since the origin of man the migratory flight of waterfowl has fired his imagination. Undoubtedly the hungry caveman, as he watched wave after wave of ducks and geese pass overhead, felt a thrill, and his dull brain questioned, “Whither and why?” The same age - old attraction each spring and fall turns thousands of faces skyward when flocks of Canada geese fly over. In historic times Iowa was the nesting ground of countless flocks of ducks, geese, and swans. Much of the marshland that was their home has been tiled and has disappeared under the corn planter. However, this state is still the summer home of many species, and restoration of various areas is annually increasing the number. Iowa is more important as a cafeteria for the ducks on their semiannual flights than as a nesting ground, and multitudes of them stop in this state to feed and grow fat on waste grain. The interest in waterfowl may be observed each spring during the blue and snow goose flight along the Missouri River, where thousands of spectators gather to watch the flight. There are many bird study clubs in the state with large memberships, as well as hundreds of unaffiliated ornithologists who spend much of their leisure time observing birds. -
Molecular Ecology of Petrels
M o le c u la r e c o lo g y o f p e tr e ls (P te r o d r o m a sp p .) fr o m th e In d ia n O c e a n a n d N E A tla n tic , a n d im p lic a tio n s fo r th e ir c o n se r v a tio n m a n a g e m e n t. R u th M a rg a re t B ro w n A th e sis p re se n te d fo r th e d e g re e o f D o c to r o f P h ilo so p h y . S c h o o l o f B io lo g ic a l a n d C h e m ic a l S c ie n c e s, Q u e e n M a ry , U n iv e rsity o f L o n d o n . a n d In stitu te o f Z o o lo g y , Z o o lo g ic a l S o c ie ty o f L o n d o n . A u g u st 2 0 0 8 Statement of Originality I certify that this thesis, and the research to which it refers, are the product of my own work, and that any ideas or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline. -
Unusual Behaviour of the Musk Duck by Roy P
July J COOPER, Musk Duck 53 1971 Unusual Behaviour of the Musk Duck by Roy P. Cooper, Melbourne The Musk Duck, Biziura lobata, is seen usually as a low silhouette, floating motionless on the surface of the water, far from the shore. Seldom will they be observed close to the edge of a lake or swamp, as they immediately dive, and swim very fast underwater, at the approach of man. The bird swims so low in the water that it can dive without any noticeable disturbance of the surface, and the observer is usually unaware of the proximity of the duck until it emerges some distance out on the lake. Most members of the Anatidae, the family which contains the ducks, geese and swans, become tame when they are unmolested and fed by man. T his particularly applies to many, but not all , of the European countries, especially E ngland and Spain, where the rivers, lakes and ponds are used each year as stop-over places for the migrating waterbirds. In addition to protection, the birds are fed, if not by the local authorities, then by the public. Two years ago, in Tokyo, Japan, the migrating ducks, returning to their breeding grounds in northern Asia, were caught in an exceptionally late snowfall. T he lakes had partly frozen and the birds could not continue northward until the weather became warmer. Much food had been put out and the birds were very tame, and were easily photographed. In A ustralia. when the same conditions and protection are granted, we find the same reactions from the ducks. -
Cal Poly Professor Documents Local Pleistocene Dinner: Ancient Duck
Cal PolyProfessor Documents Local Pleistocene Dinner: Ancient Duck http://www.calpolynews.calpoly.edu/news_releases/2008/March/duck... Skip to Content Search Cal Poly News News C a l i f o rn i a P o l y t e c h n i c S t a t e U n i v e rs i t y FOR IMMEDIATE RELEASE March 12, 2008 Contacts: Terry Jones Cal Poly Social Sciences 805-756-2523 | [email protected] Christina S. Johnson California Sea Grant University of California, San Diego 858-822-5334 | [email protected] Cal Poly Professor Documents Local Pleistocene Dinner: Ancient Duck SAN LUIS OBISPO – What was for dinner on the Channel Islands in ancient times? A flightless duck, according to a Cal Poly professor’s study, which appears in the current issue of the Proceedings of the National Science Academy. It appears California once had its own version of a dodo bird, a flightless duck known in scientific circles as Chendytes lawi, which managed to escape terrestrial predators by colonizing the Channel Islands. Unlike the dodo bird, Chendytes could dive and swim, which may partially explain its longevity as a species: more than 8,000 years. Cal Poly archeology professor Terry Jones, Judith Porcasi of the Costen Institute of Archeology at UCLA, and Jon Erlandson of the Department of Anthropology at the University of Oregon have shown that California prehistoric coastal peoples began hunting the duck about 11,000 years ago. More significantly, they hunted it for fully 8,000 years before it finally became extinct some 2,400 years ago. -
Duck, Fulvous Whistling
Waterfowl — Family Anatidae 47 Waterfowl — Family Anatidae Fulvous Whistling-Duck Dendrocygna bicolor A population collapse that eliminated the Fulvous Whistling Duck from San Diego County in the 1950s was on the verge of eliminating it from all of California by the beginning of the 21st century. The species is kept commonly in captivity—or as an ornamental waterfowl in free flight—so for decades sightings have been assumed to be due to escapees. Since 1997 even that source has largely dried up. Breeding distribution: The status of the Fulvous Whistling-Duck in San Diego County was poorly docu- Photo by Anthony Mercieca mented before the species was extirpated. The only spe- cific record of breeding is J. B. Dixon’s of small young in mouth (V10) 26 June 2003 (R. T. Patton, J. R. Barth) and the San Luis Rey River valley on 18 May 1931 (Willett three in the nearby estuary 2 August 2003 (M. Billings). 1933). Winter: One specimen was collected 5 miles west of Migration: Stephens (1919a) wrote of the Fulvous Santee (P11) 14 December 1954 (SDNHM 30023), anoth- Whistling-Duck, “Rather common spring migrant. Rare er at San Diego in December, year not cited (Salvadori winter visitant. Stragglers may remain through summer 1895). and breed.” Yet two of the three SDNHM specimens were collected in fall: Mission Bay (Q8), 10 September 1922 Conservation: The reasons for the Fulvous Whistling- (11313), and Warner Springs (F19), 21 October 1956 Duck’s extirpation remain unclear. The species is not (30051). The last represents the most recent presumed dependent on natural habitats; in the southeastern U.S. -
A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. -
Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose