Powdery Mildew, Podosphaera Xanthii and Potato - Botrytis Cinerea

Total Page:16

File Type:pdf, Size:1020Kb

Powdery Mildew, Podosphaera Xanthii and Potato - Botrytis Cinerea Confidential Histological study of the interactions between Cucumber - powdery mildew, Podosphaera xanthii and Potato - Botrytis cinerea Anindita Chakraborty Wageningen UR i Histological study of the interactions between Cucumber - powdery mildew, Podosphaera xanthii and Potato - Botrytis cinerea Anindita Chakraborty Registration number: 811206156020 MSc Minor Thesis (PBR-80424) for the partial fulfilment of Master of Sciences in Plant Biotechnology Specialization of Molecular Plant Breeding and Pathology Supervisors Dr. Yuling Bai Daily Supervisor Dr. Michela Appiano Kaile Sun Examiner Dr. Anne-Marie Wolters Dr. Evert Jacobsen July, 2015 Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands. ii Acknowledgements I would like to take the opportunity to convey my heartfelt gratitude to my supervisor Dr. Yuling Bai for her constructive supervision, valuable suggestions and relentless support to initiate and accomplish this research work. Her patience, wisdom and critical guidance to the project approach allowed me the freedom to work in a spectacular way. I would also like to express my sincere appreciation to Dr. Michela Appiano and Kaile Sun, my daily supervisors, for their special instructions on operating instruments and other laboratory knowledge required to my lab-work, as well as continuous guidelines for writing a scientific report during this research, motivation and encouragement to reach my destination. I am very thankful to Dr. Evert Jacobsen and Dr. Ageeth van Tuinen for their valuable time to provide academic guidance, insightful comments and critical remarks in improving the manuscript. Importantly I should not forget to express my sincere thanks to Dr. Anne-Marie Wolters and Dr. Jan van Kan for their advice, cooperation and valuable suggestion to carry out these experiments. I am also indebted to many student colleagues and the technical staff of the laboratory of plant breeding, WUR for their consistent support throughout my project. Moreover, I could not but mention the name of Patrick Hendrickx, for his helps in microscopy techniques. In a nutshell, I got myself as a successful student of the project having support from the above mentioned respectful people; such accomplishment would not have been possible without their contribution. iii Thesis outline This minor thesis is comprised of two experiments with the aim to provide insights into plant microbes interaction through histological analysis. In the first experiment, histological study was carried out to elucidate the mechanism of interaction of plants of a F2 population of cucumber (F2-pm3) with cucumber powdery mildew, Podosphaera xanthii. This pathogen is an obligate biotrophic fungus. The staining for the histological analysis was performed using trypan blue solution. Development of pathogen structures (appressorium, haustorium, hyphae) and response of host tissue (Hypersensitive response, HR) were examined by light microscopy in susceptible and resistant plants. In the second experiment, the infection progress of Botrytis cinerea, a necrotrophic fungus, was examined on potato plants. Leaf samples were stained in a medium using X-gluc. Histological study was performed to compare the development of the infection of Botrytis cinerea in susceptible control and DND1 silenced potato transformants. iv Contents 1 Histological study of Podosphaera xanthii on cucumber .............................................................. 1 1.1 Introduction ................................................................................................................ 1 1.1.1 Cucumber ............................................................................................................... 1 1.1.2 Cucumber Powdery Mildew ........................................................................................ 1 1.1.3 Disease symptoms.................................................................................................... 2 1.1.4 Life cycle of Powdery mildew pathogen ........................................................................ 2 1.1.5 Host-pathogen interaction ......................................................................................... 4 1.1.6 Objective of the present research ............................................................................... 6 1.2 Materials and methods .................................................................................................. 7 1.2.1 Plant materials ......................................................................................................... 7 1.2.2 Sample collection ..................................................................................................... 7 1.2.3 Staining of sample .................................................................................................... 7 1.2.4 Histological analysis .................................................................................................. 7 1.3 Results ....................................................................................................................... 9 1.3.1 Conidia germination and development ......................................................................... 9 1.3.2 Primary haustorium formation .................................................................................. 10 1.3.3 Host reaction ......................................................................................................... 11 1.3.4 Secondary structures and host reaction ..................................................................... 12 1.4 Discussion ................................................................................................................ 13 1.4.1 Infection structure development ............................................................................... 13 1.4.2 Host responses ...................................................................................................... 14 1.5 Summary ................................................................................................................. 17 1.6 References ................................................................................................................ 18 1.7 Appendices ............................................................................................................... 20 2 Histological study of Botrytis cinerea on potato ....................................................................... 21 2.1 Introduction .............................................................................................................. 21 2.1.1 Botrytis cinerea ...................................................................................................... 21 2.1.2 Infection cycle of Botrytis cinerea ............................................................................. 21 2.1.3 Resistance mechanism of the host plants against B. cinerea ......................................... 22 2.1.4 Susceptibility (S) genes ........................................................................................... 24 2.1.5 DND1 ................................................................................................................... 25 2.1.6 Objective of present study ....................................................................................... 25 2.2 Materials and methods ................................................................................................ 26 2.2.1 Plant materials ....................................................................................................... 26 2.2.2 Pathogens description ............................................................................................. 26 2.2.3 Inoculation and sample collection ............................................................................. 26 2.2.4 Staining of samples ................................................................................................ 26 2.2.5 Histological analysis ................................................................................................ 27 v 2.3 Results ..................................................................................................................... 28 2.3.1 Observation at 0.5 hours post inoculation (hpi) ........................................................... 28 2.3.2 Observation at 3 hours post inoculation (hpi) ............................................................. 28 2.3.3 Observation at 6 hours post inoculation (hpi) ............................................................. 29 2.3.4 Observation at 10 hours post inoculation (hpi) ............................................................ 30 2.3.5 Observation at 24 hours post inoculation (hpi) ............................................................ 31 2.3.6 Observation at 48 hours post inoculation (hpi) ............................................................ 32 2.4 Discussion ................................................................................................................ 35 2.5 Summary ................................................................................................................. 38 2.6 References ................................................................................................................ 39 2.7 Appendices ............................................................................................................... 43 vi 1 Histological study of Podosphaera xanthii on cucumber 1.1 Introduction 1.1.1
Recommended publications
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Powdery Mildew Species on Papaya – a Story of Confusion and Hidden Diversity
    Mycosphere 8(9): 1403–1423 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/9/7 Copyright © Guizhou Academy of Agricultural Sciences Powdery mildew species on papaya – a story of confusion and hidden diversity Braun U1, Meeboon J2, Takamatsu S2, Blomquist C3, Fernández Pavía SP4, Rooney-Latham S3, Macedo DM5 1Martin-Luther-Universität, Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany 2Mie University, Department of Bioresources, Graduate School, 1577 Kurima-Machiya, Tsu 514-8507, Japan 3Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, U.S.A. 4Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 Carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán CP 58880, México 5Universidade Federal de Viçosa (UFV), Departemento de Fitopatologia, CEP 36570-000, Viçosa, MG, Brazil Braun U, Meeboon J, Takamatsu S, Blomquist C, Fernández Pavía SP, Rooney-Latham S, Macedo DM 2017 – Powdery mildew species on papaya – a story of confusion and hidden diversity. Mycosphere 8(9), 1403–1423, Doi 10.5943/mycosphere/8/9/7 Abstract Carica papaya and other species of the genus Carica are hosts of numerous powdery mildews belonging to various genera, including some records that are probably classifiable as accidental infections. Using morphological and phylogenetic analyses, five different Erysiphe species were identified on papaya, viz. Erysiphe caricae, E. caricae-papayae sp. nov., Erysiphe diffusa (= Oidium caricae), E. fallax sp. nov., and E. necator. The history of the name Oidium caricae and its misapplication to more than one species of powdery mildews is discussed under Erysiphe diffusa, to which O.
    [Show full text]
  • Phylogeny of Podosphaera Sect. Sphaerotheca Subsect
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Schlechtendalia Jahr/Year: 2001 Band/Volume: 7 Autor(en)/Author(s): Braun Uwe, Shishkoff Nina, Takamatsu Susumu Artikel/Article: Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation 45-52 ©Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten der Martin-Luther-Universität Halle-Wittenberg 45 PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation Uw e Br a u n, Nin a Sh ish k o f f & Su su mu Ta k a m a t su Abstract: B raun, U., Shishkoff , N. & Takamatsu , S. 2001: PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences - a taxonomic interpretation. Schlechtendalia 7: 45-52. Data of a phylogenetic analysis ofPodosphaera the (Sphaerotheca) fuliginea complex based on rDNA ITS sequences are taxonomically interpreted. Using a morphological species concept, mainly based on the size of the ascomata and the diameter of the thin-walled apical portion of the asci (oculus), combined with biological data, the present taxonomic statusP. ofbalsaminae, P. diclipterae, P. fuliginea, P. intermedia, P. pseudofusca and P. sibirica as separate species has been confirmed. P. fusca emend. as well as P. xanthii emend. are reassessed as complex, compound species.P. euphorbiae-hirtae and P. phaseoli are reduced to synonymyP. withxanthii. Zusammenfassung: B raun, U., Shishkoff , N. & Takamatsu , S. 2001: PhylogenyPodosphaera of sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct.
    [Show full text]
  • Molecular Phylogenetic Analyses Reveal a Close Evolutionary Relationship Between Podosphaera (Erysiphales: Erysiphaceae) and Its Rosaceous Hosts
    Persoonia 24, 2010: 38–48 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X494596 Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts S. Takamatsu1, S. Niinomi1, M. Harada1, M. Havrylenko 2 Key words Abstract Podosphaera is a genus of the powdery mildew fungi belonging to the tribe Cystotheceae of the Erysipha­ ceae. Among the host plants of Podosphaera, 86 % of hosts of the section Podosphaera and 57 % hosts of the 28S rDNA subsection Sphaerotheca belong to the Rosaceae. In order to reconstruct the phylogeny of Podosphaera and to evolution determine evolutionary relationships between Podosphaera and its host plants, we used 152 ITS sequences and ITS 69 28S rDNA sequences of Podosphaera for phylogenetic analyses. As a result, Podosphaera was divided into two molecular clock large clades: clade 1, consisting of the section Podosphaera on Prunus (P. tridactyla s.l.) and subsection Magnicel­ phylogeny lulatae; and clade 2, composed of the remaining member of section Podosphaera and subsection Sphaerotheca. powdery mildew fungi Because section Podosphaera takes a basal position in both clades, section Podosphaera may be ancestral in Rosaceae the genus Podosphaera, and the subsections Sphaerotheca and Magnicellulatae may have evolved from section Podosphaera independently. Podosphaera isolates from the respective subfamilies of Rosaceae each formed different groups in the trees, suggesting a close evolutionary relationship between Podosphaera spp. and their rosaceous hosts. However, tree topology comparison and molecular clock calibration did not support the possibility of co-speciation between Podosphaera and Rosaceae. Molecular phylogeny did not support species delimitation of P. aphanis, P.
    [Show full text]
  • Phylogeny of Cyttaria Inferred from Nuclear and Mitochondrial Sequence and Morphological Data
    Phylogeny of Cyttaria inferred from nuclear and mitochondrial sequence and morphological data The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Peterson, K. R., and D. H. Pfister. 2010. Phylogeny of Cyttaria Inferred from Nuclear and Mitochondrial Sequence and Morphological Data. Mycologia 102, no. 6: 1398–1416. doi:10.3852/10-046. Published Version doi:10.3852/10-046 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30168159 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Mycologia, 102(6), 2010, pp. 1398–1416. DOI: 10.3852/10-046 # 2010 by The Mycological Society of America, Lawrence, KS 66044-8897 Phylogeny of Cyttaria inferred from nuclear and mitochondrial sequence and morphological data Kristin R. Peterson1 sort into clades according to their associations with Donald H. Pfister subgenera Lophozonia and Nothofagus. Department of Organismic and Evolutionary Biology, Key words: Encoelioideae, Leotiomycetes, Notho- Harvard University, 22 Divinity Avenue, Cambridge, fagus, southern hemisphere Massachusetts 02138 INTRODUCTION Abstract: Cyttaria species (Leotiomycetes, Cyttar- Species belonging to Cyttaria (Leotiomycetes, Cyttar- iales) are obligate, biotrophic associates of Nothofagus iales) have interested evolutionary biologists since (Hamamelididae, Nothofagaceae), the southern Darwin (1839), who collected on his Beagle voyage beech. As such Cyttaria species are restricted to the their spherical, honeycombed fruit bodies in south- southern hemisphere, inhabiting southern South ern South America (FIG.
    [Show full text]
  • <I>Erysiphaceae</I>
    MYCOTAXON Volume 111, pp. 251–256 January–March 2010 A new species and a new record of Erysiphaceae from China Tie-zhi Liu & Hui-min Tian [email protected] Department of Life Sciences, Chifeng College Chifeng 024000, Inner Mongolia, China Abstract—The new species Podosphaera setacea on Crataegus sanguinea (Rosaceae) in China, intermediate between species of Podosphaera sect. Podosphaera and sect. Sphaerotheca, is described, illustrated, and compared with the morphologically similar species Podosphaera tridactyla, P. ferruginea and P. spiraeae. A new record for China, Erysiphe buhrii, is recorded on the new host species Stellaria dichotoma var. lanceolata. Key words—Erysiphales, powdery mildews, taxonomy Introduction Several interesting specimens of powdery mildew fungi were collected in Chifeng City, Inner Mongolia Autonomous Region, in the north of China in 2008. One of them was a species of Podosphaera Kunze on Crataegus sanguinea resembling an immature collection of P. tridactyla (Wallr.) de Bary (Podosphaera sect. Podosphaera) with each appendage bearing a simple, unbranched apex. However, asci and ascospores were fully developed and mature, suggesting that the appendages in this species remain unbranched. Furthermore, P. tridactyla does not occur on Crataegus spp. The Chinese species on Crataegus has been compared with other Podosphaera species on Rosaceae and was determined to be a distinct, new species. Another specimen represented a new record for China, viz. Erysiphe buhrii on Stellaria dichotoma var. lanceolata, a new host for this species. Materials and methods Material was mounted in distilled water and examined using 100X oil immersion objectives (bright field and phase contrast), but without any staining, using standard light microscopy.
    [Show full text]
  • Gene Mining for Conserved, Non-Annotated Proteins Of
    Journal of Fungi Article Gene Mining for Conserved, Non-Annotated Proteins of Podosphaera xanthii Identifies Novel Target Candidates for Controlling Powdery Mildews by Spray-Induced Gene Silencing Laura Ruiz-Jiménez 1,2 , Álvaro Polonio 1,2, Alejandra Vielba-Fernández 1,2 , Alejandro Pérez-García 1,2 and Dolores Fernández-Ortuño 1,2,* 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (L.R.-J.); [email protected] (Á.P.); [email protected] (A.V.-F.); [email protected] (A.P.-G.) 2 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain * Correspondence: [email protected] Abstract: The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for Citation: Ruiz-Jiménez, L.; Polonio, controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested Á.; Vielba-Fernández, A.; the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify Pérez-García, A.; Fernández-Ortuño, new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) D. Gene Mining for Conserved, deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential Non-Annotated Proteins of functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosy- Podosphaera xanthii Identifies Novel Target Candidates for Controlling lation (CNAP1048) and efflux transport (CNAP948), were identified.
    [Show full text]
  • Podosphaera Lini (Ascomycota, Erysiphales) Revisited and Reunited with Oidium Lini
    Plant Pathology & Quarantine 9(1): 128–138 (2019) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/9/1/11 Podosphaera lini (Ascomycota, Erysiphales) revisited and reunited with Oidium lini Braun U1, Preston CD2, Cook RTA3, Götz M4, and Takamatsu S5 1Institute of Biology, Geobotany and Botanical Garden, Herbarium, Martin Luther University, Neuwerk 21, 06099 Halle/S., Germany 2Green’s Rd, Cambridge CB4 3EF, UK 3Galtres Avenue, York YO31 1JT, UK 4Institute for Plant Protection in Horticulture and Forests, JKI Julius-Kühn Institute, Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104 Braunschweig, Germany 5Faculty of Bioresources, Mie University, Tsu 514-8507, Japan Braun U, Preston CD, Cook RTA, Götz M, Takamatsu S 2019 – Podosphaera lini (Ascomycota, Erysiphales) revisited and re-united with Oidium lini. Plant Pathology & Quarantine 9(1), 128–138, Doi 10.5943/ppq/9/1/11 Abstract Podosphaera lini (Erysiphaceae) has recently been detected on linseed, Linum usitatissimum var. crepitans, in England and represents the first unequivocal record of this powdery mildew species from Great Britain. The history of powdery mildew on linseed/flax in the UK is critically discussed. DNA sequence data (ITS + 28S rDNA) have been retrieved, from the British material and a specimen from Germany, to be used for phylogenetic analyses. The position of P. lini as a species of its own in the genus Podosphaera, close to P. macularis (hop powdery mildew), was confirmed in the ITS-based phylogeny. The phylogenetic results, in concordance with the morphological traits of the flax powdery mildew (small peridial cells of the chasmothecia), place this species in Podosphaera sect.
    [Show full text]
  • 2000 ISSN 0065-1583 Polish Academy of Sciences Nencki Institute of Experimental Biology and Polish Society of Cell Biology
    NENCKI INSTITUTE OF EXPERIMENTAL BIOLOGY VOLUME 39 NUMBER 2 WARSAWhttp://rcin.org.pl, POLAND 2000 ISSN 0065-1583 Polish Academy of Sciences Nencki Institute of Experimental Biology and Polish Society of Cell Biology ACTA PROTOZOOLOGICA International Journal on Protistology Editor in Chief Jerzy SIKORA Editors Hanna FABCZAK and Anna WASIK Managing Editor Małgorzata WORONOWICZ-RYMASZEWSKA Editorial Board Andre ADOUTTE, Paris J. I. Ronny LARSSON, Lund Christian F. B ARDELE, Tübingen John J. LEE, New York Magdolna Cs. BERECZKY, Göd Jiri LOM, Ćeske Budejovice Jean COHEN, Gif-Sur-Yvette Pierangelo LUPORINI, Camerino John O. CORLISS, Albuquerque Hans MACHEMER, Bochum Gyorgy CSABA, Budapest Jean-Pierre MIGNOT, Aubiere Isabelle DESPORTES-LIVAGE, Paris Yutaka NAITOH, Tsukuba Tom FENCHEL, Helsing0r Jytte R. NILSSON, Copenhagen Wilhelm FOISSNER, Salsburg Eduardo ORIAS, Santa Barbara Vassil GOLEMANSKY, Sofia Dimitrii V. OSSIPOV, St. Petersburg Andrzej GRĘBECKI, Warszawa, Vice-Chairman Leif RASMUSSEN, Odense Lucyna GRĘBECKA, Warszawa Sergei O. SKARLATO, St. Petersburg Donat-Peter HÄDER, Erlangen Michael SLEIGH, Southampton Janina KACZANOWSKA, Warszawa Jiri VÄVRA, Praha Stanisław L. KAZUBSKI, Warszawa Patricia L. WALNE, Knoxville Leszek KUŹNICKI, Warszawa, Chairman ACTA PROTOZOOLOGICA appears quarterly. The price (including Air Mail postage) of subscription to ACTA PROTOZOOLOGICA at 2000 is: US $ 180,- by institutions and US $ 120,- by individual subscribers. Limited numbers of back volumes at reduced rate are available. TERMS OF PAYMENT: check, money oder or payment to be made to the Nencki Institute of Experimental Biology account: 11101053-3522-2700-1-34 at Państwowy Bank Kredytowy XIII Oddz. Warszawa, Poland. For matters regarding ACTA PROTOZOOLOGICA, contact Editor, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warszawa, Poland; Fax: (4822) 822 53 42; E-mail: [email protected] For more information see Web page http://www.nencki.gov.pl/public.htm).
    [Show full text]
  • Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants
    International Journal of Molecular Sciences Review Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants Manjulatha Mekapogu 1, Jae-A Jung 1,* , Oh-Keun Kwon 1, Myung-Suk Ahn 1, Hyun-Young Song 1 and Seonghoe Jang 2,* 1 Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; [email protected] (M.M.); [email protected] (O.-K.K.); [email protected] (M.-S.A.); [email protected] (H.-Y.S.) 2 World Vegetable Center Korea Office (WKO), Wanju 55365, Korea * Correspondence: [email protected] (J.-A.J.); [email protected] (S.J.) Abstract: Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Re- cently, multiomics technologies, in combination with genome editing tools, have provided shortcuts Citation: Mekapogu, M.; Jung, J.-A.; to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, Kwon, O.-K.; Ahn, M.-S.; Song, H.-Y.; Jang, S.
    [Show full text]
  • Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
    THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by By Nigel Maxted and Shelagh Kell1 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO, or its Members. 2 1 School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 PART 1: INTRODUCTION 7 1.1 Background 7 1.2 The global and local importance of crop wild relatives 8 1.3 Definition of a crop wild relative 8 1.4 Global numbers of crop wild relatives 9 1.5 Threats to
    [Show full text]
  • I ECOLOGY and EPIDEMIOLOGY of PODOSPHAERA MACULARIS
    ECOLOGY AND EPIDEMIOLOGY OF PODOSPHAERA MACULARIS, THE CAUSAL AGENT OF HOP POWDERY MILDEW A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by William Weldon August 2020 i © William Weldon ii ECOLOGY AND EPIDEMIOLOGY OF PODOSPHAERA MACULARIS, THE CAUSAL AGENT OF HOP POWDERY MILDEW William Weldon, Ph. D. Cornell University 2020 Over the past twenty years, hop production has expanded in parallel with the craft brewing industry, resulting in a high-value crop with low tolerance for defect in harvested hop cones. Podosphaera macularis is an ascomycete fungus that causes powdery mildew of hop, which is arguably the most destructive disease with respect to its potential for diminishing yield and cone quality. Historically, research on P. macularis has focused largely on the asexual growth forms of the pathogen, as that is the only phase currently observed in the Pacific Northwest (PNW) US region, where over 96% of US hop production resides. As such, the epidemiology and ecology of the disease with respect to the P. macularis ascigerous stage (chasmothecia) is not well understood, even though this growth form has been reported in most hop growing regions east of the Rocky Mountain range. Furthermore, due to the difficult- to-culture obligately biotrophic nature of the pathogen, there are relatively few molecular tools available to track P. macularis population structure and movement. As such, we developed a library of 54 high-throughput, cost effective amplicon sequencing (AmpSeq) molecular markers by re-purposing an existing transcriptome dataset as the source of genetic variation.
    [Show full text]