Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition

Total Page:16

File Type:pdf, Size:1020Kb

Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition DISCOVERY AND CHARACTERIZATION OF HYDROLYTIC DEHALOGENASES FROM GENOMIC DATA by Max Wong A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto Copyright Q 2008 by Max Wong Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-38866-2 Our file Notre reference ISBN: 978-0-494-38866-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. •*• Canada Abstract Discovery and characterization of hydrolytic dehalogenases from genomic data Max Wong Master of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto 2008 Halogenated organic compounds are prevalent environmental contaminants as a result of their widespread use in industry, and they are cited for deleterious health effects. In situ bioremediation offers an alternative to existing processes for removing these substances from contaminated sites. Hydrolytic dehalogenases catalyze the reaction of organohalogens with water, replacing halide with a hydroxyl group. This project's principle objective was to find new dehaloge­ nases from genomic data, using previously characterized dehalogenases as search templates. Putative haloalkane, haloacid and fluoroacetate dehalogenases were identified by BLAST search of a selection of genomes from enviromental bacteria and scrutinized for the presence of known critical residues. They were recombinantly expressed and screened for activity. Out of 27 targets examined, eleven were true dehalogenases. Three haloacid dehaloge­ nases were discovered with previously-uncharacterized activity against fluoroacetate, and one haloalkane dehalogenase exhibited moderate activity against 1,2-dichloroethane. The success rate was family-dependent, and sequence similarity to characterized dehalogenases was gen­ erally a good indicator of a target's dehalogenation ability. 11 Acknowledgements First, my supervisor, Dr. Elizabeth Edwards: thank you for taking me onto the team and allowing me to work on this unique project. It's been quite a ride! Second, the talented people I worked with these two years. There's quite a list... • In the Best lab: Drs. Alexander Iakounine and Alexei Savchenko, Greg Brown and Michael Proudfoot for taking me into their lab and offering their expertise with protein expression and purification - and Thursday night bouts of sanity. • In EdLab: in alphabetical order, Winnie Chan, Angelika Duffy, Melanie Duhamel, Ariel Grostern, Laura Hug, Ahsan Islam, Eve Moore, Allie Simmonds, Alison Waller, Jennifer Wang and Cheryl Washer for acting as sounding boards for ideas and for giving me a home in Wallberg. • In Emil Pai's lab: Peter Chan for assistance in target selection and numerous training sessions, and Terence To for guidance with kinetic assays. Then there are the people who kept me (mostly) happy and hale during my stay... • Nadine Lam, for making sure I knew when to work, when not to work, for making sure I was always fed, for tending to the things I didn't, for listening to senseless ranting, and for letting a lot of my mistakes slide. • Jen Wang, for treating me like family and for giving me a wisp of Calgary. • Raymond Choi, for injecting sardonic realism into my life. • Stanley Wong, for listening to my frustrations on this side of the country. Most importantly, I would like to thank my parents, Paul and Eliza, for standing by me during the past six years. It wouldn't have happened this way without their support. 111 Contents 1 Motivation 1 1.1 Introduction 1 1.2 Existing remediation methods 2 1.2.1 Excavation 3 1.2.2 Pump-and-treat 3 1.2.3 Bioremediation 4 1.3 Opportunities from genomic data 4 1.4 Research objectives 7 1.5 Outline of document 7 2 Background 8 2.1 Haloalkane dehalogenases 8 2.2 L-2-haloacid dehalogenases 13 2.3 Fluoroacetate dehalogenases 15 3 Materials and Methods 17 iv 3.1 Selection of gene targets 17 3.2 Cloning and expression of gene targets 18 3.3 Expression vector preparation 19 3.4 Protein expression 21 3.5 Protein purification by affinity chromatography 21 3.6 Rapid colourimetric dehalogenation assay 22 3.7 Further purification of confirmed dehalogenases 23 3.8 Optimization of enzyme reaction conditions 24 3.9 Determination of enzyme kinetic parameters 25 3.9.1 Quantitative determination of halide production 25 4 Results and Discussion 28 4.1 Selection and purification of targets 28 4.2 Biochemical screening 33 4.2.1 Identification of HADs with defluorination activity 36 4.3 Kinetic characterization of haloacid dehalogenases 37 4.4 Rate estimate of defluorination 39 4.5 Rate estimate of 1,2-DCA dechlorination by Jann2620 41 4.6 Discussion 43 4.6.1 Confirmation of HAD annotations 45 4.6.2 Confirmation of HAn dehalogenase annotations 48 v 4.6.3 Confirmation of fluoroacetate dehalogenase annotations 53 5 Conclusions 58 5.1 Contributions 60 5.2 Future Work 60 Appendices 62 A Standard curves 63 A. 1 Standard curves for spectrophotometric assay 63 A.2 Standard curves for ion chromatographic assay 64 B Kinetic data for HADs 68 B.l Kinetics against chloroacetate 68 B.2 Kinetics against fluoroacetate 68 VI List of Tables 4.1 List of source organisms 29 4.2 List of putative dehalogenase targets 30 4.3 Existing annotations of putative dehalogenases 32 4.4 Protein yields 34 4.5 Results of general screens 35 4.6 Kinetic characteristics of HADs with ClAc 37 4.7 Comparison of turnover rates of HAD-FAcs and FAc dehalogenases 40 4.8 Pairwise alignment statistics of HAD targets 46 4.9 Pairwise alignment statistics of HAn targets 50 4.10 Pairwise alignment statistics of FAc dehalogenase targets 57 Vll List of Figures 2.1 Structure of DhaA of Rhodococcus rhodocrous NCIMB 13064 10 2.2 Reaction scheme of 1,2-DCA with DhlA 11 2.3 Structure of L-DEX YL from Pseudomonas sp. YL 14 3.1 pl5TV-L cloning plasmid 19 3.2 IC elution profile for separating fluoride and fluoroacetate 26 4.1 Visualization of proteins by SDS-PAGE 31 4.2 Example of colourimetric screening results 33 4.3 Defluorination by HAD dehalogenase Adeh3811 36 4.4 Example of kinetic characterization, here of Adeh3811 of Anaeromyxobacter dehalogenans 2CV-C. O.l^g/mL enzyme in 25mM CAPS-Na pH 10.5 38 4.5 Example of defluorination as observed via IC 39 4.6 IC confirmation of Jann2620 dechlorination of 1,2-DCA 42 4.7 Alignment of all HAD dehalogenase targets 44 4.8 Unrooted phylogenetic tree of HAD targets 47 viii 4.9 Alignment of positive HAn dehalogenases and closely related negatives .... 49 4.10 Unrooted phylogenetic tree of HAn targets 51 4.11 Domain structure annotation of Bpro2447 52 4.12 Unrooted phylogenetic tree of FAc dehalogenase targets 54 4.13 Alignment of FAc dehalogenase targets 56 B.l Michaelis-Menten curve for BC2051 69 B.2 Michaelis-Menten curve for Bpro0530 70 B.3 Michaelis-Menten curve for Bpro4516 71 B.4 Michaelis-Menten curve for GMI1362 72 B.5 Michaelis-Menten curve for Jannl658 73 B.6 Defluorination of FAc by Adeh3811 74 B.7 Defluorination of FAc by Bpro0530 74 B.8 Defluorination of FAc by Bpro4516 75 IX Chapter 1 Motivation 1.1 Introduction Industrial societies produce and consume many halogenated organic compounds. Chlori­ nated organic compounds are common feedstocks for industrial chemical synthesis: for ex­ ample, over one million tonnes of 1,2-dichloroethane (1,2-DCA) is produced every year, much of which is used in the synthesis of vinyl chloride (VC), the monomer of the com­ mon plastic PVC. Other chlorinated compounds are used as solvents, fumigants and pesti­ cides, among other applications. Brominated organic compounds are used as flame-retardant materials. Fluorinated organics have been used extensively in refrigeration (chlorofluoro- carbons; CFCs), stain-resistant coatings, non-stick coatings (such as polytetrafluoroethylene, commonly known as Teflon^) and lubricants. Humans were not the first to incorporate halogens into organic compounds. Over 4000 naturally-ocurring chlorinated compounds have been identified of both physicochemical and biological origin (1).
Recommended publications
  • Diversity and Mechanisms of Bacterial Dehalogenation Reactions High Number of Halogen Substituents
    O.B. Janssen, T. Bosma and G.J. Poelarends Diversity and Mechanisms of 8acterial Dehalogenation Reactions Abstract Halogenated aliphatic compounds occur widespread as environmental pollutants. Since many of these compounds are xenobiotics and show large dif­ ferences in degradability which can be correlated to critical steps in catabolic pathways, they are suitable for studies on the evolution of dehalogenating pathways. We have investigated the degradation of 1,2-dichloroethane and 1,3- dichloropropene in detail. For both compounds, the initial step is hydrolytic dehalogenation. The 1,2-dichloroethane and 1,3-dichloropropene dehalogenases we re found to belong to different groups of identical enzymes detected in bac­ teria isolated from various sites. Genetic analysis and adaptation experiments indicated th at the 1,2-dichloroethane degradation pathway may be of recent evolutionary origin. The large-scale use of 1,3-dichloropropene in agriculture may have contributed to the distribution of genes encoding hydrolytic dehalogenases in the environment. Introduction The biodegradation of synthetic chlorinated chemicals that enter the environ­ ment is dependent on the capacity of microbial enzymes to recognize these xenobiotic molecules and cleave or labilize carbon-halogen bonds (Janssen et al., 1994). Microbiological studies have led to the isolation of a range of organisms that degrade halogenated aliphatic compounds and use them as a carbon source for growth, and a several dehalogenating enzymes that directly act on carbon­ halogen bonds have now been identified (Leisinger and Bader 1993; Janssen et al., 1994; Fetzner and Lingens, 1994). In a few cases, the carbon-halogen bond is not directly cleaved but labilized by introduction of other functional groups (Ensley, 1991).
    [Show full text]
  • Purification and Characterization of a Haloalkane
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 1997, p. 3707–3710 Vol. 63, No. 9 0099-2240/97/$04.0010 Copyright © 1997, American Society for Microbiology Purification and Characterization of a Haloalkane Dehalogenase of a New Substrate Class from a g-Hexachlorocyclohexane- Degrading Bacterium, Sphingomonas paucimobilis UT26 YUJI NAGATA,1* KEISUKE MIYAUCHI,1 JIRI DAMBORSKY,2 KATKA MANOVA,2 2 1 ALENA ANSORGOVA, AND MASAMICHI TAKAGI Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan,1 and Laboratory of Biomolecular Structure and Dynamics, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic2 Received 30 December 1996/Accepted 10 June 1997 The linB gene product (LinB), 1,3,4,6-tetrachloro-1,4-cyclohexadiene halidohydrolase, which is involved in the degradation of g-hexachlorocyclohexane in Sphingomonas paucimobilis UT26 (Y. Nagata, T. Nariya, R. Ohtomo, M. Fukuda, K. Yano, and M. Takagi, J. Bacteriol. 175:6403–6410, 1993), was overproduced in E. coli and purified to homogeneity. The molecular mass of LinB was deduced to be 30 kDa by gel filtration chromatography and 32 kDa by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel, indicating that LinB is a monomeric enzyme. The optimal pH for activity was 8.2. Not only monochloroalkanes (C3 to C10) but also dichloroalkanes, bromoalkanes, and chlorinated aliphatic alcohols were good substrates for LinB, sug- gesting that LinB is a haloalkane dehalogenase with a broad range of substrate specificity. These results indicate that LinB shares properties with another haloalkane dehalogenase, DhlA (S. Keuning, D. B. Janssen, and B. Witholt, J. Bacteriol. 163:635–639, 1985), which shows significant similarity to LinB in primary structure (D.
    [Show full text]
  • University of Groningen Bacterial Growth on Halogenated
    University of Groningen Bacterial Growth on Halogenated Aliphatic Hydrocarbons Janssen, Dick B.; Oppentocht, Jantien E.; Poelarends, Gerrit J. Published in: EPRINTS-BOOK-TITLE IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Janssen, D. B., Oppentocht, J. E., & Poelarends, G. J. (2003). Bacterial Growth on Halogenated Aliphatic Hydrocarbons: Genetics and Biochemistry. In EPRINTS-BOOK-TITLE Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Chapter 7 BACTERIAL GROWTH ON HALOGENATED ALIPHATIC HYDROCARBONS: GENETICS AND BIOCHEMISTRY DICK B. JANSSEN, JANTIEN E. OPPENTOCHT AND GERRIT J. POELARENDS Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands 1. INTRODUCTION Many synthetically produced halogenated aliphatic compounds are xenobiotic chemicals in the sense that they do not naturally occur on earth at biologically significant concentrations.
    [Show full text]
  • Crystal Structure of the Cystic Fibrosis Transmembrane Conductance
    JOURNAL OF BACTERIOLOGY, Apr. 2010, p. 1785–1795 Vol. 192, No. 7 0021-9193/10/$12.00 doi:10.1128/JB.01348-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factorᰔ† Christopher D. Bahl,1 Christophe Morisseau,2 Jennifer M. Bomberger,3 Bruce A. Stanton,3 Bruce D. Hammock,2 George A. O’Toole,4 and Dean R. Madden1* Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 037551; Department of Entomology and Cancer Center, University of California, Davis, California 95616 2; Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire3; and Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 037554 Received 13 October 2009/Accepted 15 January 2010 Downloaded from Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other ␣/␤ hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-Å resolution by X-ray crystallography. The catalytic triad consists of residues jb.asm.org Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative.
    [Show full text]
  • Analogous Enzymes: Independent Inventions in Enzyme Evolution Michael Y
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH Analogous Enzymes: Independent Inventions in Enzyme Evolution Michael Y. Galperin,1 D. Roland Walker,1,2 and Eugene V. Koonin1,3 1National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 USA; 2Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218 USA It is known that the same reaction may be catalyzed by structurally unrelated enzymes. We performed a systematic search for such analogous (as opposed to homologous) enzymes by evaluating sequence conservation among enzymes with the same enzyme classification (EC) number using sensitive, iterative sequence database search methods. Enzymes without detectable sequence similarity to each other were found for 105 EC numbers (a total of 243 distinct proteins). In 34 cases, independent evolutionary origin of the suspected analogous enzymes was corroborated by showing that they possess different structural folds. Analogous enzymes were found in each class of enzymes, but their overall distribution on the map of biochemical pathways is patchy, suggesting multiple events of gene transfer and selective loss in evolution, rather than acquisition of entire pathways catalyzed by a set of unrelated enzymes. Recruitment of enzymes that catalyze a similar but distinct reaction seems to be a major scenario for the evolution of analogous enzymes, which should be taken into account for functional annotation of genomes. For many analogous enzymes, the bacterial form of the enzyme is different from the eukaryotic one; such enzymes may be promising targets for the development of new antibacterial drugs.
    [Show full text]
  • From Rhizobium Sp. RC1
    Adamu et al. SpringerPlus (2016) 5:695 DOI 10.1186/s40064-016-2328-9 REVIEW Open Access L‑2‑Haloacid dehalogenase (DehL) from Rhizobium sp. RC1 Aliyu Adamu1, Roswanira Abdul Wahab2 and Fahrul Huyop1* *Correspondence: [email protected] Abstract 1 Department L-2-Haloacid dehalogenase (DehL) from Rhizobium sp. RC1 is a stereospecific enzyme of Biotechnology and Medical Engineering, that acts exclusively on L-isomers of 2-chloropropionate and dichloroacetate. The Faculty of Biosciences amino acid sequence of this enzyme is substantially different from those of other and Medical Engineering, L-specific dehalogenases produced by other organisms. DehL has not been crystallised, Universiti Teknologi Malaysia, 81310 Johor Baharu, Johor, and hence its three-dimensional structure is unavailable. Herein, we review what is Malaysia known concerning DehL and tentatively identify the amino acid residues important for Full list of author information catalysis based on a comparative structural and sequence analysis with well-character- is available at the end of the article ised L-specific dehalogenases. Keywords: DehL, Rhizobium sp. RC1, Dehalogenation, Catalytic amino acid residues Background Halogenated organic compounds contain at least one carbon–halogen bond. More than 3800 different, naturally occurring, halogenated organic compounds are present in huge amounts in the biosphere (Gribble 2003). However, even more have been industri- ally produced, which is attributable to their diverse use in various industrially related products, e.g., agrochemicals, pharmaceuticals, and solvents (Fetzner and Lingens 1994). These compounds have caused serious environmental pollution owing to their direct toxicity, their potentially toxic breakdown products, and their persistence in the environment. Interestingly, a number of bacteria use halogenated organic compounds as their sole carbon and energy sources, thereby helping to reverse the effects of environmental hal- ogen-associated pollution.
    [Show full text]
  • Designing Novel Biochemical Pathways to Commodity Chemicals Using
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Designing novel biochemical pathways to commodity chemicals using 2 ReactPRED and RetroPath2.0 3 4 5 6 Authors and Affiliations 7 • Eleanor Vigrass 8 • M. Ahsanul Islam 9 • Department of Chemical Engineering, Loughborough University, Loughborough, 10 Leicestershire, LE11 3TU, UK 11 12 Corresponding Author 13 • M. Ahsanul Islam ([email protected]) 14 15 16 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 27 Abstract 28 Commodity chemicals are high-demand chemicals, used by chemical industries to synthesise 29 countless chemical products of daily use. For many of these chemicals, the main production 30 process uses petroleum-based feedstocks. Concerns over these limited resources and their 31 associated environmental problems, as well as mounting global pressure to reduce CO2 32 emissions have motivated efforts to find biochemical pathways capable of producing these 33 chemicals. Advances in metabolic engineering have led to the development of technologies 34 capable of designing novel biochemical pathways to commodity chemicals.
    [Show full text]
  • Madison, WI (US); Paul Otto, Madison, G:25: R 1339: St
    USOO842O367B2 (12) United States Patent (10) Patent No.: US 8.420,367 B2 Darzins et al. (45) Date of Patent: Apr. 16, 2013 (54) POLYNUCLEOTIDES ENCODING MUTANT 5,700,935 A 12/1997 Takenishi et al. HYDROLASE PROTEINS WITHENHANCED 3. A 6. 3. E. KINETICS AND FUNCTIONAL EXPRESSION 5,932,421war. A 8/1999 Ginsberga ca. et al. 5,945,526 A 8, 1999 Lee et al. (75) Inventors: Aldis Darzins, Highlands Ranch, CO 6.255.461 B1 7/2001 Mosbach et al. (US); Lance P. Encell, Fitchburg, WI 6,333,154 B1 12/2001 Ladant et al. (US); Rachel Friedman Ohana, 6,416,733 B1 7/2002 Barrett et al. Madison, WI (US); Paul Otto, Madison, g:25: R 1339: St. et al. WI (US); Gediminas Vidugiris, 6,800.453 B2 102004 Labaer et al. Fitchburg, WI (US); Keith V. Wood, Mt. 7,078,504 B2 7/2006 Short et al. Horeb, WI (US); Monika G. Wood, Mt. 7,238,842 B2 7/2007 Wood et al. Horeb, WI (US); Kris Zimmerman, 7,425,436 B2 9, 2008 Darzins et al. Madison, WI (US); Michael R. Slater, E. R. E. E." Madison, WI (US); Kate Qin Zhao, 2002.01371.71 A1 9, 2002 Short et al. Verona, WI (US) 2003/O166957 A1 9, 2003 Benneteau et al. 2004/O152880 A1 8, 2004 Minden (73) Assignee: Promega Corporation, Madison, WI 2005/0048580 A1 3/2005 Labaer et al. (US) 2005/OO95651 A1 5/2005 Camarero et al. 2006, OO24808 A1 2/2006 Darzins et al. 2007/0O874OO A1 4/2007 Darzins et al.
    [Show full text]
  • A Review on Non-Stereospecific Haloalkanoic Acid Dehalogenases
    African Journal of Biotechnology Vol. 10(48), pp. 9725-9736, 29 August, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.934 ISSN 1684–5315 © 2011 Academic Journals Review A review on non-stereospecific haloalkanoic acid dehalogenases Tengku Haziyamin Tengku Abdul Hamid 1, Azzmer Azzar Abdul Hamid 1 and Fahrul Huyop 2* 1Department of Biotechnology, Faculty of Science, International Islamic University, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia. 2Department of Industrial Biotechnology, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia. Accepted 1 July, 2011 Haloalkanoic acid dehalogenases remove halides from organic haloacids and have potential as bioremediation agents. DehE from Rhizobium sp . RC1, DehI from Pseudomonas putida PP3 and D,L- DEX 113 from Pseudomonas sp. 113 are non-stereospecific dehalogenases that invert the configurations of D- and L- carbons bound to a halogen. The kinetics of DehE has been partially characterized and brominated compounds have greater specificity constant values than do the corresponding chlorinated compounds. The sequence of DehE is similar to that of DehI; therefore, the two enzymes may have similar structures and functions. The three-dimensional structure of DehI is known and its reaction mechanism was inferred from its structure and a mutagenesis study of D,L-DEX 113. Aspartate residues at positions 189 and 194 in DehI and D,L-DEX 113 were predicted to be involved in catalysis. These residues activate a water molecule that directly attacks the chiral carbon. Because DehE and DehI are sequentially related, delineating the structure of DehE is important to ascertain if the catalytic residues and reaction mechanism are the same for both enzymes.
    [Show full text]
  • Hydrolytic Defluorination • Haloacetate Dehalogenase (EC 3.8.1.3) • Aerobic Bacteria: Pseudomonas Spp., Moraxella Sp
    Bioremediation of PFAS: Promise and Challenges Yujie Men Ph.D., Assistant Professor December 4, 2020 #SerdpEstcp2020 Outline Part 1: History of microbial cleavage of C–F in organofluorines Part 2: Current research status on PFAS biotransformation Part 3: Implications in biotechnologies for PFAS remediation 2 #SerdpEstcp2020 Part 1: Microbial cleavage of C–F in organofluorines C−F bond and bioavailability • C–F bond: the strongest single bond in nature Bond kJ/mol Bond kJ/mol C‒F 439 C‒C 347 C‒H 414 C‒Cl 331 C‒O 351 C‒N 293 • Microbial cleavage of C–F: thermodynamically feasible, kinetically hindered ∆G0 (kJ/mol) Reaction Defluorination Dechlorination Tetrahalomethane → Trihalomethane + H+ + halide‒ -89 -188 (Dolfing 2003; Parsons et al., 2008) 3 #SerdpEstcp2020 Part 1: Microbial cleavage of C–F in organofluorines Hydrolytic defluorination • Haloacetate dehalogenase (EC 3.8.1.3) • Aerobic bacteria: Pseudomonas spp., Moraxella sp. B, Burkholderia sp. FA1, Aureobacterium sp. strain RH025 • Substrate: monofluoroacetate • No reports on PFAS as substrates - + O O O O O H2O F + H O Aureobacterium sp. F - HO - Strain RH025 O Haloacetate O dehalogenase H O + F Monofluoroacetate Glycolate F 2 H OH (Goldman, 1965&1969; Key et al., 1997; Natarajan et al., 2005; Kurihara et al., 2008) 4 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination • Unknown enzyme(s) • Anaerobic, methanogenic communities • Poor reproducibility • Cometabolism • No follow-up reports since 2000 O O O O F - F - F - - O O O H3C O F F F Trifluoroacetate Difluoroacetate Monofluoroacetate Acetate (Visscher et al., 1994; Key et al., 1997; Kim et al., 2000) 5 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination (cont’d) • Pyruvate dehydrogenase from E.
    [Show full text]
  • Enzymatic Defluorination of Fluorinated Compounds
    Seong et al. Appl Biol Chem (2019) 62:62 https://doi.org/10.1186/s13765-019-0469-6 INVITED REVIEW Open Access Enzymatic defuorination of fuorinated compounds Hyeon Jeong Seong†, Seong Woo Kwon†, Dong‑Cheol Seo, Jin‑Hyo Kim* and Yu‑Sin Jang* Abstract Fluorine‑containing compounds are widely used because they have properties required in textiles and coatings for electronic, automotive, and outdoor products. However, fuorinated compounds do not easily break down in nature, which has resulted in their accumulation in the environment as well as the human body. Recently, the enzymatic defuorination of fuorine‑containing compounds has gained increasing attention. Here, we review the enzymatic defuorination reactions of fuorinated compounds. Furthermore, we review the enzyme engineering strategies for cleaving C–F bonds, which have the highest dissociation energy found in organic compounds. Keywords: C–F bond, Defuorination, Fluorine, Perfuorinated compound Introduction and the corresponding enzymes, have not been well Because perfuorinated compounds (PFCs) repel both elucidated. water and oil, they are used as durable repellent treat- On the other hand, fuorinated compounds such as ments for textiles such as outdoor clothes and for home fuoroacetate and 5′-fuoro-5′-deoxyadenosine have been products such as carpets [1]. In addition, PFCs are widely identifed as natural products in nature [10, 11], dem- used in the production of fuoropolymers such as polyte- onstrating the existence of a biosynthesis pathway for trafuoroethylene (trade name, Tefon), which is widely fuorinated compounds in organisms [12]. A representa- used in coatings for electronic, automotive, and outdoor tive pathway of this type is the C–F bond forming reac- products [2].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]