Designing Novel Biochemical Pathways to Commodity Chemicals Using

Total Page:16

File Type:pdf, Size:1020Kb

Designing Novel Biochemical Pathways to Commodity Chemicals Using bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Designing novel biochemical pathways to commodity chemicals using 2 ReactPRED and RetroPath2.0 3 4 5 6 Authors and Affiliations 7 • Eleanor Vigrass 8 • M. Ahsanul Islam 9 • Department of Chemical Engineering, Loughborough University, Loughborough, 10 Leicestershire, LE11 3TU, UK 11 12 Corresponding Author 13 • M. Ahsanul Islam ([email protected]) 14 15 16 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 27 Abstract 28 Commodity chemicals are high-demand chemicals, used by chemical industries to synthesise 29 countless chemical products of daily use. For many of these chemicals, the main production 30 process uses petroleum-based feedstocks. Concerns over these limited resources and their 31 associated environmental problems, as well as mounting global pressure to reduce CO2 32 emissions have motivated efforts to find biochemical pathways capable of producing these 33 chemicals. Advances in metabolic engineering have led to the development of technologies 34 capable of designing novel biochemical pathways to commodity chemicals. Computational 35 software tools, ReactPRED and RetroPath2.0 were utilised to design 49 novel pathways to 36 produce benzene, phenol, and 1,2-propanediol — all industrially important chemicals with 37 limited biochemical knowledge. A pragmatic methodology for pathway curation was 38 developed to analyse thousands and millions of pathways that were generated using the 39 software. This method utilises publicly accessible biological databases, including MetaNetX, 40 PubChem, and MetaCyc to analyse the generated outputs and assign EC numbers to the 41 predicted reactions. The workflow described here for pathway generation and curation can be 42 used to develop novel biochemical pathways to commodity chemicals from numerous starting 43 compounds. 44 45 Key words: Biochemical pathways, cheminformatics tools, commodity chemicals, 46 ReactPRED, RetroPath2.0, retrosynthesis 47 48 49 50 51 52 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 53 Introduction 54 Commodity chemicals, such as ethylene, propylene, benzene, phenol, ethanol, and toluene, are 55 high-value chemicals used by industries to synthesise countless chemical products of daily use. 56 From pharmaceuticals to biofuels (Bengelsdorf and Dürre, 2017; Straathof, 2014), the global 57 chemical turnover was valued at € 3475 billion in 2017, and this demand is expected to rise 58 further in the future (Cefic, 2018). Both organic and inorganic commodities are mainly derived 59 from fossil fuel-based petroleum feedstocks to release harmful direct and indirect greenhouse 60 gases such as CO2 and CO into the atmosphere. Concerns over these limited fossil-fuel 61 resources and increasing global pressure to reduce greenhouse gas emissions (UNEP, 2017) 62 have led to an urgent need to find sustainable biochemical routes capable of producing these 63 chemicals and satisfying their demands. 64 65 Biochemical routes involving fermentation and enzymatic methods have widely discussed in 66 the literature for sustainable production of commodity chemicals (Saha, 2003; Siebert and 67 Wendisch, 2015). Fermentation is a microbial process that uses microorganisms such as 68 bacteria and yeast to produce enzymes (Renge et al., 2012), which then catalyse the 69 biochemical reactions producing commodities from sugars and other biomass resources 70 (Straathof, 2014). For example, the production of ethanol via the fermentation of syngas 71 (Bengelsdorf et al., 2013; Bengelsdorf and Dürre, 2017), or the conversion of protein waste to 72 cinnamic acid and β-alanine (Kumar et al., 2015) are microbially mediated fermentation 73 processes. Enzymes are highly selective, but they also have the ability of catalyse numerous 74 non-selective or non-specific reactions in addition to the specific reaction the enzyme has 75 evolved for (Kumar et al., 2015; Straathof, 2014). This ability of catalysing non-specific 76 reactions is known as the ‘enzyme promiscuity’ (Tawfik, 2010), and is dependent on the 77 substrates and cofactors involved in the reactions (Delépine et al., 2018; Shin et al., 2013; 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 78 Tawfik, 2010). Although billions of years of evolution have enriched the repertoire of natural 79 biochemical reaction networks of an organism, many chemical commodities cannot be 80 produced ‘naturally’ due to surpassing an organism’s natural capabilities (Wang et al., 2017). 81 Additionally, there is lack of knowledge on promiscuous enzyme activities such as the number 82 of promiscuous reactions that enzymes can partake (Lee et al., 2012; Shin et al., 2013; Wang 83 et al., 2017). These limitations prevent the discovery and implementation of potential 84 biochemical pathways to high-value commodity chemicals. 85 86 Recent advances in cheminformatics and bioinformatics have enabled the design of novel (i.e., 87 biologically unknown) biochemical pathways (Brunk et al., 2012; Medema et al., 2012), and 88 have expanded our knowledge of promiscuous enzyme activities through the design and 89 implementation of computational tools (Hadadi et al., 2019; Wang et al., 2017). Many of these 90 state-of-the-art computational tools are equipped with unique abilities to aid metabolic 91 engineering efforts by designing novel pathways for numerous applications, including 92 bioremediation of xenobiotics (Finley et al., 2009), novel drug discovery (Moura et al., 2016), 93 and production of commodity chemicals (Islam et al., 2017; Yim et al., 2011). Examples of 94 some of the widely used cheminformatics tools include From Metabolite to Metabolite (FMM) 95 (http://fmm.mbc.nctu.edu.tw/), BINCE (Hatzimanikatis et al., 2005), DESHARKY (Rodrigo 96 et al., 2008), PathPred (Moriya et al., 2010), and MRE (Kuwahara et al., 2016). These tools 97 have been applied to numerous studies and have been extensively discussed elsewhere (Brunk 98 et al., 2012; Henry et al., 2010; Islam et al., 2017; Medema et al., 2012; Wang et al., 2017). 99 100 Many of these computational tools ‘retrosynthetically’ generate biochemical pathways by 101 iteratively applying the ‘generalised reaction rules’ to transform and connect target compounds 102 to the metabolites of interest (Hadadi et al., 2016; Medema et al., 2012; Wang et al., 2017). 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 103 The generalised reaction rules are derived using the EC (Enzyme commission) number 104 information of known biochemical reactions assigned by the Nomenclature Committee of the 105 International Union of Biochemistry and Molecular Biology (NC-IUBMB, 1992). These tools 106 have the capability of generating novel and known biochemical reactions; however, a 107 significant limitation that most tools suffer from is the combinational explosion of pathways 108 predicted due to using the generalised reaction rules. The number of pathways generated could 109 result in the thousands and in some cases, in millions, presenting the challenge of efficient post- 110 processing of the generated pathways to find meaningful results (Islam et al., 2017). Although 111 publications relevant to a specific software provide information on how to use and generate 112 results using the software, often there is no further guidance on how to curate these results to 113 obtain useful pathways: a crucial need for practicing metabolic engineers. This need leads to 114 developing individual curation methods that are mainly tools or software specific, as well as 115 specific to the conducted studies. 116 117 In this study, two powerful computational cheminformatics tools, ReactPRED (Sivakumar et 118 al., 2016) and RetroPath2.0 (Delépine et al., 2018) were applied to design novel biochemical 119 pathways to produce three commodity chemicals: benzene, phenol, and 1, 2-propanediol. These 120 target compounds were chosen based on their limited biochemical pathway knowledge (i.e., 121 how many pathways are known in the current biological databases) and global demand. For 122 example, it was estimated that the global demand for benzene in 2016 was 46 million tonnes 123 (Pérez-Uresti et al., 2017). RetroPath2.0 and ReactPRED are relatively new, open source, and 124 customisable cheminformatics tools. We chose to use these tools based on their ability to 125 predict novel retrosynthetic (i.e., transforming the target compounds to their simpler 126 precursors) and synthetic (i.e., using simpler precursor compounds to construct target 127 molecules) pathways through identifying the chemical bond transformations occurring in the 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425007; this version posted January 3, 2021.
Recommended publications
  • Alternative Feedstocks in Chemicals Manufacturing
    Alternative Feedstocks in Chemicals Manufacturing Joanna McFarlane and Sharon Robinson Green Chemistry and Green Engineering Conference American Chemical Society Washington DC June 27, 2006 High Feedstock Prices Negatively Impact the Chemical Industry • The high cost of natural gas has eliminated the competitive advantage for U.S. chemical production • As fuel prices rise, chemical manufacturers are shutting down domestic production and moving plants to Asia & Middle East − 50% of methanol, 45% of ammonia, and 15% of ethylene capacities have been shut down in U.S. since 2000 − U.S. import of fertilizers increased to 45% from 10% in 1990 − In 2005 8,400 jobs were lost in the chemical industry − Industry went from an 80-yr trade surplus ($20B in 1995) to trade deficits beginning in 2002 Sources: Guide to the Business of Chemistry 2005 Chemicals IOF Annual Report 2004 June 27, 2006 Energy Independence Issue: Industrial Use of Petroleum & Natural Gas 30 25 20 15 Quads/yr 10 Petroleum 5 Natural Gas Feedstock Energy Usage 0 4% of Total U.S. Energy Consumption 3% of Total U.S. Natural Gas Consumption Petrochem Ind Other Industry Electric June 27, 2006 Residential Commercial Transportation Alternative Feedstock Options for Producing Large-Volume Chemicals • Coal – gasification and liquefaction • Biomass – thermochemical, biological processes, pyrolysis • Methane – stranded, unconventional, and hydrates • Unconventional petroleum – oil shale, tar sands, heavy oil • Novel pathways – CO2/H2O, methane, hydrogen to hydrocarbons June 27, 2006 Selected
    [Show full text]
  • Diversity and Mechanisms of Bacterial Dehalogenation Reactions High Number of Halogen Substituents
    O.B. Janssen, T. Bosma and G.J. Poelarends Diversity and Mechanisms of 8acterial Dehalogenation Reactions Abstract Halogenated aliphatic compounds occur widespread as environmental pollutants. Since many of these compounds are xenobiotics and show large dif­ ferences in degradability which can be correlated to critical steps in catabolic pathways, they are suitable for studies on the evolution of dehalogenating pathways. We have investigated the degradation of 1,2-dichloroethane and 1,3- dichloropropene in detail. For both compounds, the initial step is hydrolytic dehalogenation. The 1,2-dichloroethane and 1,3-dichloropropene dehalogenases we re found to belong to different groups of identical enzymes detected in bac­ teria isolated from various sites. Genetic analysis and adaptation experiments indicated th at the 1,2-dichloroethane degradation pathway may be of recent evolutionary origin. The large-scale use of 1,3-dichloropropene in agriculture may have contributed to the distribution of genes encoding hydrolytic dehalogenases in the environment. Introduction The biodegradation of synthetic chlorinated chemicals that enter the environ­ ment is dependent on the capacity of microbial enzymes to recognize these xenobiotic molecules and cleave or labilize carbon-halogen bonds (Janssen et al., 1994). Microbiological studies have led to the isolation of a range of organisms that degrade halogenated aliphatic compounds and use them as a carbon source for growth, and a several dehalogenating enzymes that directly act on carbon­ halogen bonds have now been identified (Leisinger and Bader 1993; Janssen et al., 1994; Fetzner and Lingens, 1994). In a few cases, the carbon-halogen bond is not directly cleaved but labilized by introduction of other functional groups (Ensley, 1991).
    [Show full text]
  • The Top 50 Commodity. Chemicals: Impact of Catalytic Process Limitations on Energy, Environment, and Economics
    ,,. , I /. I; i :<. .' ,'- \ -. I, 'I ., ,I ' ''I PNL-10684 ' UC-60 1 The Top 50 Commodity. Chemicals: Impact of Catalytic Process Limitations on Energy, Environment, and Economics Anna Lee Y. Tonkovich, Ph.D. Mark A. Gerber August 1995 Prepared for the U. S. Department of Energy, Office of Industrial Technology Biological Chemical Technologies(OR), Research @CTR) under contractand DE-ACO6-76RLO 1830 Program Pacific Northwest Laboratory * Richland, WA 99352 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Executive Summary The production processes for the top 50 U. S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratorya has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An. excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting ‘from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts.
    [Show full text]
  • Toxic Industrial Chemicals
    J R Army Med Corps 2002; 148: 371-381 J R Army Med Corps: first published as 10.1136/jramc-148-04-06 on 1 December 2002. Downloaded from Toxic Industrial Chemicals Introduction location to another. Depending on the The first chemical warfare agent of the available routes of movement, and quantity modern era, chlorine, was released with of chemical to be moved, transport can occur devastating effect on 22 April 1915 at Ypres, by truck or rail tank cars, over water by barge Belgium. Along a 4 mile front, German or boat, over land through above- or below- soldiers opened the valves of 1,600 large and ground pipelines and by air. 4,130 small cylinders containing 168 tons of Toxic chemicals may be produced by the chlorine.The gas formed a thick white cloud burning of materials (e.g., the burning of that crossed the first allied trenches in less Teflon produces perfluoroisobutylene) or by than a minute.The allied line broke, allowing their reaction if spilled into water (e.g. silanes the Germans to advance deep into allied produce hydrogen chloride and cyanides, territory. If the Germans had been fully hydrogen cyanide). prepared to exploit this breakthrough, the course and possibly the outcome of WWI Toxic Industrial Chemicals may have been very different. (TICs) Chlorine is a commodity industrial A Toxic Industrial Chemical (TIC) is defined chemical with hundreds of legitimate uses; it as: is not a "purpose designed" chemical warfare an industrial chemical which has a LCt50 agent. Phosgene, another commodity value of less than 100,000 mg.min/m3 in industrial chemical, accounted for 80% of any mammalian species and is produced in the chemical fatalities during WWI.
    [Show full text]
  • CONCAWE Review Vol. 23, No. 1
    Petrochemical feedstocks: the cornerstone of competitiveness Future outlook While the chemicals The future of much of Europe’s chemical industry depends heavily upon the availability of affordable industry will remain petrochemical feedstocks. largely reliant on In the Middle East, where petrochemical feedstocks are petrochemical-based cheap, and in China, where demand is surging, pro- feedstocks for decades ducers are substantially increasing capacity for a wide range of petrochemicals including polypropylene and to come, the scope for polyethylene. In the USA, cheap shale gas and eco- greater use of nomic recovery are driving a chemical industry invest- ment bonanza. But demand growth in the European renewables as Union is weak and output growth is modest. feedstocks cannot be The challenge for the chemical industry is two-fold. First, ignored. Europe is highly dependent upon imported feedstock. including enzymes, vitamins, organic acids, amino Oil, the most important, is globally traded, and input acids, polymers and thickeners for industries ranging prices are competitive. But because European gas from advanced materials to the pharmaceutical, food prices are generally high, we are at a competitive disad- and feed industries. Animal fats and vegetable oils are vantage for chemicals that use natural gas as a feed- used in the production of detergents and coatings, and stock, such as ammonia, hydrogen and the precursors natural extracts are turned into additives for personal of polyamides and methanol. Second, many industrial care and cosmetics products. processes for petrochemicals are energy intensive: cheap gas or electricity elsewhere leaves European More recently, consumer demand has powered the chemical producers at a competitive disadvantage.
    [Show full text]
  • Escaping from the Commodity Dependence Trap Through Technology and Innovation
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT COMMODITIES & DEVELOPMENT REPORT 2021 Escaping from the Commodity Dependence Trap through Technology and Innovation Geneva, 2021 © 2021, United Nations All rights reserved worldwide Requests to reproduce excerpts or to photocopy should be addressed to the Copyright Clearance Center at copyright.com. All other queries on rights and licences, including subsidiary rights, should be addressed to: United Nations Publications 405 East 42nd Street New York, New York 10017 United States of America Email: [email protected] Website: https://shop.un.org/ The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of any firm or licensed process does not imply the endorsement of the United Nations. United Nations publication issued by the United Nations Conference on Trade and Development. UNCTAD/DITC/COM/2021/1 ISBN: 978-92-1-1130188 eISBN: 978-92-1-403046-1 ISSN: 2519-8580 eISSN: 2524-2709 Sales No.: E.21.II.D.14 COMMODITIES & DEVELOPMENT Escaping from the Commodity Dependence Trap through Technology and Innovation REPORT 2021 Acknowledgements The Commodities and Development Report 2021: Escaping from the Commodity Dependence Trap through Technology and Innovation was prepared by Janvier D. Nkurunziza (team leader), Stefan Csordás and Marco Fugazza, from the Commodities Branch of the Division on International Trade and Commodities of the United Nations Conference on Trade and Development (UNCTAD).
    [Show full text]
  • Attachment 8
    Environmental Assessment for Food Contact Notification FCN 1641 http://www.fda.gov/Food/IngredientsPackagingLabeling/EnvironmentalDecisions/default.htm ATTACHMENT 8 ENVIRONMENTAL ASSESSMENT 1. Date: February 10, 2016 2. Name of Applicant/Petitioner: Solvay Chemicals, Inc. 3. Address: 3333 Richmond Avenue Houston, Texas 77098 Lewis & Harrison LLC (Agent) 122 C Street NW Suite 505 Washington DC 20001 4. Description of Proposed Action: A. Requested Action This Food Contact Notification (FCN) requests the clearance of a food-contact substance (FCS) that is an aqueous solution containing peroxyacetic acid (PAA), hydrogen peroxide, acetic acid (AA), hydroxyethylidene 1,1-diphosphonic acid (HEDP), dipicolinic acid (DPA) and sodium hydroxide (NaOH). The FCS will be used in food processing facilities as an antimicrobial agent used in: 1) process water (processing aid) and ice used in the production and preparation of poultry products such as post-main chiller (air or water) secondary processing of whole birds, carcasses, parts and pieces, skin on or off and organs, in the washing, rinsing, cooling and processing of poultry products; and pre-air chiller dip tanks and post-main water chiller systems as finishing chillers; in spray, wash, rinse, dip, chiller water, low-temperature (e.g., less than 40oF) immersion baths, or scald water for whole or cut poultry carcasses, parts, trim, and organs; and, 2) Process water, ice, or brine used for washing, rinsing, or cooling of processed and pre­ formed meat as defined in 21 CFR 170.3(n)(29) and poultry
    [Show full text]
  • Organic Commodity Chemicals from Biomass
    CHAPTER 13 Organic Commodity Chemicals from Biomass I. INTRODUCTION Biomass is utilized worldwide as a source of many naturally occurring and some synthetic specialty chemicals and cellulosic and starchy polymers. High- value, low-volume products, including many flavorings, drugs, fragrances, dyes, oils, waxes, tannins, resins, gums, rubbers, pesticides, and specialty polymers, are commercially extracted from or produced by conversion of biomass feedstocks. However, biomass conversion to commodity chemicals, which includes the vast majority of commercial organic chemicals, polymers, and plastics, is used to only a limited extent. This was not the case up to the early 1900s. Chars, methanol, acetic acid, acetone, and several pyroligneous chemicals were manufactured by pyrolysis of hardwoods (Chapter 8). The naval stores industry relied upon softwoods as sources of turpentines, terpenes, rosins, pitches, and tars (Chapter 10). The fermentation of sugars and starches supplied large amounts of ethanol, acetone, butanol, and other organic chemi- cals (Chapter 11). Biomass was the primary source of organic chemicals up to the mid- to late 1800s when the fossil fuel era began, and was then gradually displaced by 495 496 Organic Commodity Chemicals from Biomass fossil raw materials as the preferred feedstock for most organic commodities. Aromatic chemicals began to be manufactured in commercial quantities as a by-product of coal coking and pyrolysis processes in the late 1800s. The production of liquid hydrocarbon fuels and organic chemicals by the destruc- tive hydrogenation of coal (Bergius process) began in Germany during World War I. The petrochemical industry started in 1917 when propylene in cracked refinery streams was used to manufacture isopropyl alcohol by direct hydration.
    [Show full text]
  • Bio-Based Chemicals Overview
    Bio-Based Chemicals Overview 2019 PCA International Conference Vancouver, B.C., Canada, 23 - 24 September 2019 Doris de Guzman Senior Consultant – Biomaterials [email protected] OUR CORE STRENGTHS Intermediates, Fibres & Specialty Resins Soda Ash Epichlorohydrin Epoxy Resins Bisphenol A Caustic Soda EDC VCM PVC Acetone Phenol Isocyanates Chlorine Peroxy PO Polyols Polyurethanes Polyester Film Chlorohydrin PO PET Resin Bio-Materials Derivatives EO Derivatives Ethylene Oxide MEG Polyester Fibre Acetic Acid PTA Polyester Polypropylene Fibre Paraxylene Vinyl Acetate Monomer DMT Caprolactam Acrylic Fibre Acrylonitrile Adiponitrile HMDA Polyamide 6 Polyamide Fibre Adipic Acid AH Salt Polyamide 66 Polyamide Resin Polyacetal ABS & SAN PBT Polycarbonate Methanol Isodecanol DIDP Orthoxylene Styrene Methyl Acrylate Isononanol DINP Phthalic Anhydride 1,4-Butanediol Ethyl Acrylate 2-PH DPHP Acrylic Acid Unsaturated Maleic Anhydride Polyester Resin 2-Ethylhexyl Acrylate 2-EH DOP Butyl Acrylate Butanols 2 BIO-MAT E R IAL S & INT E R ME DIAT E S A monthly publication reporting market trends, pricing, and feedstock for Bio-based chemicals and their Petrochemicals counterpart Started in 2007 & Inspired by an unwavering belief that we can and will do better www.greenchemicalsblog.com 3 Value additions of Bio-based Industry to US Economy Forest Products $364bn Bio-based $22bn Chemicals $3.5bn $45bn (NA) $106bn Enzymes Textiles Agriculture $35bn and $1.11bn Forestry Biorefining Bioplastic $506m bottles and packaging Source: USDA, PCA 4 Value additions
    [Show full text]
  • Purification and Characterization of a Haloalkane
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 1997, p. 3707–3710 Vol. 63, No. 9 0099-2240/97/$04.0010 Copyright © 1997, American Society for Microbiology Purification and Characterization of a Haloalkane Dehalogenase of a New Substrate Class from a g-Hexachlorocyclohexane- Degrading Bacterium, Sphingomonas paucimobilis UT26 YUJI NAGATA,1* KEISUKE MIYAUCHI,1 JIRI DAMBORSKY,2 KATKA MANOVA,2 2 1 ALENA ANSORGOVA, AND MASAMICHI TAKAGI Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan,1 and Laboratory of Biomolecular Structure and Dynamics, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic2 Received 30 December 1996/Accepted 10 June 1997 The linB gene product (LinB), 1,3,4,6-tetrachloro-1,4-cyclohexadiene halidohydrolase, which is involved in the degradation of g-hexachlorocyclohexane in Sphingomonas paucimobilis UT26 (Y. Nagata, T. Nariya, R. Ohtomo, M. Fukuda, K. Yano, and M. Takagi, J. Bacteriol. 175:6403–6410, 1993), was overproduced in E. coli and purified to homogeneity. The molecular mass of LinB was deduced to be 30 kDa by gel filtration chromatography and 32 kDa by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel, indicating that LinB is a monomeric enzyme. The optimal pH for activity was 8.2. Not only monochloroalkanes (C3 to C10) but also dichloroalkanes, bromoalkanes, and chlorinated aliphatic alcohols were good substrates for LinB, sug- gesting that LinB is a haloalkane dehalogenase with a broad range of substrate specificity. These results indicate that LinB shares properties with another haloalkane dehalogenase, DhlA (S. Keuning, D. B. Janssen, and B. Witholt, J. Bacteriol. 163:635–639, 1985), which shows significant similarity to LinB in primary structure (D.
    [Show full text]
  • Bio-Based Drop-In, Smart Drop-In and Dedicated Chemicals
    Bio-based drop-in, smart drop-in and dedicated chemicals Authors: Michael Carus, Lara Dammer, Dr. Ángel Puente, Achim Raschka, Dr. Oliver Arendt, nova-Institut GmbH This paper was created in the context of the RoadToBio-project. RoadToBio aims to pave the way for the European chemical industry towards a larger bio-based portfolio and competitive success. The roadmap developed in RoadToBio will specify the benefits for the T O chemical industry along the path from fossil-based industry towards a bioeconomy to meet the societal needs in 2030 (for more information see www.roadtobio.eu) The following briefing text provides definitions and explanations of three different kinds of bio-based chemicals, namely drop-in, smart drop-in and dedicated/novel chemicals, as depicted in Figure 1. The text does not aim to provide finite exact definitions in a strict scientific sense. Rather, it intends to outline a structure in which different kinds Figure 1 gives a first overview of the different pathways from of bio-based chemicals, which require different market strategies, can feedstock to chemicals for fossil-based and different kinds of bio- be classified. As such, the classification will be used as a basis for the based chemicals: Drop-ins, smart drop-ins and dedicated. Drop-ins roadmap work carried out in RoadToBio. The paper is meant as food enter the conventional pathway at an early stage, whereas smart for thought and we would welcome feedback from stakeholders. If drop-ins start with a biomass-related process before they enter the you would like to send us your reaction to this paper, please contact conventional pathway at a late stage.
    [Show full text]
  • University of Groningen Bacterial Growth on Halogenated
    University of Groningen Bacterial Growth on Halogenated Aliphatic Hydrocarbons Janssen, Dick B.; Oppentocht, Jantien E.; Poelarends, Gerrit J. Published in: EPRINTS-BOOK-TITLE IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Janssen, D. B., Oppentocht, J. E., & Poelarends, G. J. (2003). Bacterial Growth on Halogenated Aliphatic Hydrocarbons: Genetics and Biochemistry. In EPRINTS-BOOK-TITLE Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Chapter 7 BACTERIAL GROWTH ON HALOGENATED ALIPHATIC HYDROCARBONS: GENETICS AND BIOCHEMISTRY DICK B. JANSSEN, JANTIEN E. OPPENTOCHT AND GERRIT J. POELARENDS Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands 1. INTRODUCTION Many synthetically produced halogenated aliphatic compounds are xenobiotic chemicals in the sense that they do not naturally occur on earth at biologically significant concentrations.
    [Show full text]