Archaea Domain As Biocatalyst in Environmental Biotechnology and Industrial Applications: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Archaea Domain As Biocatalyst in Environmental Biotechnology and Industrial Applications: a Review Journal of Advances in Microbiology 5(2): 1-21, 2017; Article no.JAMB.35591 ISSN: 2456-7116 Archaea Domain as Biocatalyst in Environmental Biotechnology and Industrial Applications: A Review Mohd Asyraf Kassim1*, Noor Haza Fazlin Hashim2,3 and Nur Athirah Yusof4 1Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Malaysia. 2School of Biosciences and Biotechnology, Faculty of Sciences, Universiti Kebangsaan Malaysia (UKM), Malaysia. 3Water Quality Laboratory, National Hydraulic Research Institute Malaysia (NAHRIM), Seri Kembangan, Malaysia. 4Biotechnology Research Institute, Universiti Malaysia Sabah (UMS), Malaysia. Authors’ contributions This work was carried out in collaboration between all authors. Author MAK manage the outline and literature search and wrote the first draft of the manuscript. Authors NHFH and NAY helped in the writing certain part of the manuscript such as introduction and revised the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JAMB/2017/35591 Editor(s): (1) P. Rama Bhat, PG Biotechnology, Alva’s College, Karnataka, India. Reviewers: (1) Eliton da Silva Vasconcelos, Federal University of São Carlos – UFSCar, Brazil. (2) Selma Gomes Ferreira Leite, Universidade Federal do Rio de Janeiro, Brasil. Complete Peer review History: http://www.sciencedomain.org/review-history/20731 Received 20th July 2017 Accepted 21st August 2017 Review Article th Published 30 August 2017 ABSTRACT Achaea constitute a considerable fraction of the prokaryotes which colonize marine and terrestrial ecosystem especially in the extreme environments. These microorganisms play crucial roles and contribute significant impacts on global energy cycles. In fact, the extremophilic characteristics acquired by many archaeans display unusual properties of adaptations to extreme conditions which make them a potentially valuable resource in exploring new biotechnological processes and a wide range of industrial applications. In this review, the role of archaea domain as biocatalysts in environmental biotechnology and industrial applications were summarized and discussed. This review has been categories into three main sections, (a) archaeal characteristics and their extremozymes (b) environmental biotechnology that covers on bioremediation, hydrocarbon biodegradation and biomining (c) industrial applications, which discusses on the production of polyhydroxyalkanoates (PHA), biosurfactant, and antibiotic produced by archaea domain. _____________________________________________________________________________________________________ *Corresponding author: E-mail: [email protected], [email protected]; Kassim et al.; JAMB, 5(2): 1-21, 2017; Article no.JAMB.35591 Keywords: Archaea; aromatic; bioleaching; extremozyme; halocin; polyhydroxylalkanoate (PHA). 1. INTRODUCTION shapes, ranging from spherical, spiral, oblong, rectangular to rod. One of the distinguishing Archaea are prokaryotic microorganisms that can features of archaea is the structure of their be found in the extreme environments. Due to membrane glycolipids; where archaea do not their capability to live under extreme conditions, contain murein at their cell wall. Archaea exhibit the exploration on the potential of archaea as unique features of cell surface organelles that biocatalysts for industrial applications has are not present in bacteria such as flagella, hami, become the subject of intensive research, aiming cannulaeand pili [1]. on the cell structures, enzyme characterizations and its adaptability under extreme conditions. Year 1977 marked a history when Carl Woese, a These exclusive properties make them as a microbiologist discovered two distinct groups of valuable resource with great potential organisms that were not related to one another applications in a wide range of new technologies. than they were to eukaryotes [2]. Later, a new classification was proposed based on Moreover, the study on archaeal enzymes that comparisons of gene sequences of the small are able to maintain their activity under extreme ribosomal subunit (SSU), which was accepted conditions such as high temperature, salinity, pH until now; three domains of life consist of and pressure has also gain great interest among Eukarya, Bacteria and Archaea [3]. After the researchers. The discovery of extremophilic discovery by Woese, molecular biology archaea and their enzymes has lead to techniques have been the preferred choice to significant effects conspicuously on biocatalysis distinguish between archaea and bacteria. activities. In addition, extremozymes produced by Indeed, the organization and information archaea are widely used in the synthesis of processing system in archaea point to a closer pharmaceutical products, antibodies, cosmetics, relationship to eukaryotes rather than bacteria. dietary supplements, enzymatic preparations, Apart from that, the structures of ribosomes and bioremediation, renewable energy, as well as all chromatin, presence of histones and sequence kinds of chemical compounds production. The similarity contribute to the classification of application of extremozymes from archaeal cells archaea [4,5]. In contrast, the metabolic has allow great improvements in multiple industry pathways of archaea show similarity to sectors and help to reduce the quantity of waste prokaryotic rather than eukaryotic counterparts production, energy usage and material [6]. Table 1 shows the comparison of consumption. Thus, archaeal applications harbor characteristics between bacteria and archaea. promise for creating cheaper technology, cost- effective sustainable energy sources and 3. BIOCATALYST environmentally friendly. The trend to an increasing number of researches The main hallmarks of this review are to discuss on genome data of extremophilic microorganisms and provide a comprehensive review on the worldwide has able to discover hundreds of future prospects of achaea as biocatalysts in enzymes with great potential in white environmental biotechnology and other industrial biotechnology. Currently, extremozymes are applications. In this review, the emphasis highly in demand in industries as they are able to encompasses on the type of extremozymes that withstand harsh processes for a long period of are produced by different group of achaea, time. Overall at present, microbial enzymes are enzymes and metabolites production and their currently on demand in various industries as they potential industrial applications. This review contribute immense advantages such as would be beneficial to scientists and researchers reducing the risk of contamination, improving the in understanding the potential of achaea as tools transfer rates, lowering viscosity and increasing for various value-added products and the solubility of substrates. Majority of the revolutionize the current industrial applications. industrial enzymes have been derived from bacteria and fungi. Nowadays, archaeal enzymes 2. ARCHAEA are in the limelight of intensive investigations due to their nature that grow optimally at extreme In general, Archaea have similar characteristics conditions. In terms of definition, extremozymes as bacteria in terms of shape, size and are enzymes that are able to withstand appearance. Archaeal cells can take all types of harsh and extreme conditions in industrial 2 Kassim et al.; JAMB, 5(2): 1-21, 2017; Article no.JAMB.35591 Table 1. Comparison of the distinctive characteristics of Archaea and Bacteria Archaea Bacteria Ribosome Present Present Cell wall Pseudopeptidoglycan Peptidoglycan/Lipoposacchari de Habitat Extreme environment: hot spring, Soil, water, animal, plant and salt lake, ruminant etc. Growth Asexually by the process of binary Asexually by the fission, budding and fragmentation binary fission, budding and fragmentation Ability to form spore Genomic organization Topoisomerase I I/III Recombinase RadA RecA DNA ligase NAD dependant ATP dependant Replicative HelicaseA DnaB helicase DNA polymerase Family B polymerase DNA E polymerase (PolIII) Histones Yes No Introns Some present Rare/none Protein synthesis Methionine as start codon Formylmethionine as start codon Example Family Family Enterobactericeae Euryarchaeota (Aciduliprofundum (Escherichia coli) and boonei) and Crenarchaeota Streptococaceae (Sulfolobus solfataricus) (Streptococcus pneumoniae) processes [7]. Perhaps, the high demands of the temperature such as increased hydrophobicity biotech industries for tailor-made novel and surface charge, higher hydrogen bonds, biocatalysts, and the rapid development of new shorter loops structure, reduction in thermolabile techniques such as genomics, proteomics and amino acid, and lowered in surface area to metabolomics are the main factors contributing volume ratio [9]. Owing to that, thermophilic the enhancement of the development of novel enzymes are currently on demand in vast extremozymes. Here, this review will focus on industries which require superior biocatalysts that enzymes that are derived from extremophilic are capable to work at high temperatures. archaea and their relevance for industrial Moreover, reactions at high temperatures reduce applications. the probability of undesired by-products and microbial contamination. In addition, thermophilic 3.1 Thermophilic Extremozymes archaea also show high resistance under high pressure and presence of chemical denaturants Thermophiles can be further categorized either such as solvent and detergents [10]. as thermophiles or hyperthermophiles.
Recommended publications
  • Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources
    minerals Review Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources Katrin Pollmann 1,*, Sabine Kutschke 1, Sabine Matys 1, Sophias Kostudis 1, Stefanie Hopfe 1 and Johannes Raff 1,2 1 Helmholtz Insitute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; [email protected] (S.K.); [email protected] (S.M.); [email protected] (S.K.); [email protected] (S.H.); [email protected] (J.R.) 2 Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany * Correspondence: [email protected]; Tel.: +49-351-260-2946 Academic Editor: W. Scott Dunbar Received: 7 April 2016; Accepted: 7 June 2016; Published: 13 June 2016 Abstract: Microorganisms have developed various mechanisms to deal with metals, thus providing numerous tools that can be used in biohydrometallurgical processes. “Biomining” processes—including bioleaching and biooxidation processes—facilitate the degradation of minerals, accompanied by a release of metals. These processes are especially attractive for low-grade ores and are used on an industrial scale mainly for sulfidic ores. In biosorption processes, biomass or certain biomolecules are used to bind and concentrate selected ions or other molecules from aqueous solutions. Biosorptive materials can be an environmentally friendly and efficient alternative to conventional materials, such as ion exchange resins. Other interesting mechanisms are bioaccumulation, bioflotation, bioprecipitation, and biomineralisation. Although these processes are well-known and have been studied in detail during the last decades, the recent strong progress of biotechnologies (e.g., genetic engineering and molecule design), as well as their combination with novel developments in material sciences (e.g., nanotechnologies) facilitate new strategies for the application of biotechnologies in mineral processing.
    [Show full text]
  • Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region
    metals Article Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region Dryelle Nazaré Oliveira do Nascimento 1,†, Adriano Reis Lucheta 1,† , Maurício César Palmieri 2, Andre Luiz Vilaça do Carmo 1, Patricia Magalhães Pereira Silva 1, Rafael Vicente de Pádua Ferreira 2, Eduardo Junca 3 , Felipe Fardin Grillo 3 and Joner Oliveira Alves 1,* 1 SENAI Innovation Institute for Mineral Technologies, National Service for Industrial Training (SENAI), Belém, PA 66035-405, Brazil; [email protected] (D.N.O.d.N.); [email protected] (A.R.L.); [email protected] (A.L.V.d.C.); [email protected] (P.M.P.S.) 2 Itatijuca Biotech, São Paulo, SP 05508-000, Brazil; [email protected] (M.C.P.); [email protected] (R.V.d.P.F.) 3 Graduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC 88806-000, Brazil; [email protected] (E.J.); [email protected] (F.F.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 December 2018; Accepted: 8 January 2019; Published: 14 January 2019 Abstract: The use of biotechnology to explore low-grade ore deposits and mining tailings is one of the most promising alternatives to reduce environmental impacts and costs of copper extraction. However, such technology still depends on improvements to be fully applied in Brazil under industrial scale. In this way, the bioleaching, by Acidithiobacillus ferrooxidans, in columns and stirred reactors were evaluated regarding to copper extraction of a mineral sulfide and a weathered ore from the Brazilian Amazon region.
    [Show full text]
  • Preparing for Future Products of Biotechnology
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24605 SHARE Preparing for Future Products of Biotechnology DETAILS 230 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-45205-2 | DOI 10.17226/24605 CONTRIBUTORS GET THIS BOOK Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System; Board on Life Sciences; Board on Agriculture and Natural Resources; Board on Chemical Sciences and FIND RELATED TITLES Technology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Preparing for Future Products of Biotechnology Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System Board on Life Sciences Board on Agriculture and Natural Resources Board on Chemical Sciences and Technology Division on Earth and Life Studies A Report of Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No.
    [Show full text]
  • Lunar Regolith Biomining Workshop Report
    NASA/CP—2008–214564 Lunar Regolith Biomining Workshop Report Compiled and Edited by: Bonnie P. Dalton, NASA (retired) Ames Research Center, Moffett Field, California Frank F. Roberto Idaho National Laboratory Idaho Falls, Idaho Report of a workshop sponsored by and held at NASA Ames Research Center, Moffett Field, CA May 5-6, 2007 Click here: Press F1 key (Windows) or Help key (Mac) for help September 2008 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. Collected to the advancement of aeronautics and space papers from scientific and technical science. The NASA scientific and technical conferences, symposia, seminars, or other information (STI) program plays a key part in meetings sponsored or co-sponsored helping NASA maintain this important role. by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NASA substantial public interest. Aeronautics and Space Database and its public interface, the NASA Technical Report Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific aeronautical and space science STI in the world. and technical material pertinent to Results are published in both non-NASA channels NASA’s mission. and by NASA in the NASA STI Report Series, which includes the following report types: Specialized services also include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION.
    [Show full text]
  • Processing of Water Treatment Sludge by Bioleaching
    energies Article Processing of Water Treatment Sludge by Bioleaching Tomasz Kamizela and Malgorzata Worwag * Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland; [email protected] * Correspondence: [email protected] Received: 14 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Biological metal leaching is a technology used in the mining and biohydrometallurgy industries where microorganisms mediate the dissolution of metals and semi-metals from mineral ores and concentrates. The technology also has great potential for various types of metal-rich waste. In this study, bioleaching was used for sludge from water treatment. In addition to checking the applicability of the process to such a substrate, the influence of experimental conditions on the effectiveness of bioleaching of metals with sludge from water treatment was also determined, including sample acidification, addition of elemental sulfur, incubation temperature, and Acidithiobacillus thiooxidans-isolated strain. The measurement of metal concentration and, on this basis, the determination of bioleaching efficiency, as well as pH and oxygen redox potential (ORP), was carried out during the experiment at the following time intervals: 3, 6, 9, 12 days. After the experiment was completed, a mass balance was also prepared. After the experiment, high efficiency of the process was obtained for the tested substrate. The effectiveness of the process for most metals was high (Ca 96.8%, Cr 92.6%, Cu 80.6%, Fe 95.6%, Mg 91%, Mn 99.5%, Ni 89.7%, Pb 99.5%, Zn 93%). Only lower values were obtained for Al (58.6%) and Cd (68.4%).
    [Show full text]
  • Biomining of Rare Earth Elements from Phosphate Ores and Minerals
    Western Australian School of Mines Faculty of Science and Engineering Biomining of Rare Earth Elements from Phosphate Ores and Minerals Homayoun Fathollahzadeh This thesis is presented for the Degree of Doctor of Philosophy of Curtin University October 2018 Dedication To my beloved parents, my amazing sister, and hope. .You sing your song and depart" کس "زندگی صحنهٔ یکتای هنرمندی ماست، هر ی نغمهٔ خود خواند و از صحنه رود، The scene is eternal. ّ Greet the song that stays صحنه پیوسته بجاست، خرم آن نغمه که مردم بسپارند هب یاد" in the people’s memory to infinity." Jaleh Esfahani ژاله اصفهانی i "Be happy for this moment. This moment is your life" Omar Khayyam ii Abstract Rare earth elements (REEs) are known as strategic and critical elements and, in recent years, have gained great interest as key materials that play an integral role in smart technologies following development of sustainable energy technologies. Extraction of REEs is of great environmental and economic importance. Currently, multistep hydrometallurgical extraction of REEs requires significant processing with high-energy consumption, where the conventional REEs production relies on either an alkaline process that uses concentrated sodium hydroxide or an acidic process that uses concentrated sulfuric acid, both at high temperatures. This had led to the development of processes which are more economically feasible and environmentally friendly. The exploration of extracting REEs with phosphate solubilizing bacteria (PSB) has started recently. The use of PSM for bioleaching of REEs provides a biotechnical approach for the extraction of REEs from primary and secondary sources. However, understanding the microbial-mineral interaction and the mechanisms of phosphate mineral bio-solubilisation in order to develop a successful method for bioleaching of REEs still remains a major challenge.
    [Show full text]
  • Space Station Biomining Experiment Demonstrates Rare Earth Element Extraction in Microgravity and Mars Gravity ✉ Charles S
    ARTICLE https://doi.org/10.1038/s41467-020-19276-w OPEN Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity ✉ Charles S. Cockell 1,11 , Rosa Santomartino 1,11, Kai Finster 2, Annemiek C. Waajen 1, Lorna J. Eades3, Ralf Moeller4, Petra Rettberg 4, Felix M. Fuchs4,5, Rob Van Houdt 6, Natalie Leys 6, Ilse Coninx6, Jason Hatton7, Luca Parmitano7, Jutta Krause7, Andrea Koehler7, Nicol Caplin7, Lobke Zuijderduijn7, Alessandro Mariani8, Stefano S. Pellari8, Fabrizio Carubia8, Giacomo Luciani8, Michele Balsamo8, Valfredo Zolesi8, Natasha Nicholson1, Claire-Marie Loudon1, Jeannine Doswald-Winkler9, Magdalena Herová9, 1234567890():,; Bernd Rattenbacher9, Jennifer Wadsworth10, R. Craig Everroad10 & René Demets7 Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingo- monas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth. 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
    [Show full text]
  • Physiology and Genetics of Acidithiobacillus Species: Applications for Biomining
    Physiology and Genetics of Acidithiobacillus species: Applications for Biomining by Olena I. Rzhepishevska ISBN 978-91-7264-509-7 Umeå University Umeå 2008 1 2 TABLE OF CONTENTS ABSTRACT 5 ABBREVIATIONS AND CHEMICAL COMPOUNDS 6 PAPERS IN THIS THESIS 7 1. INTRODUCTION 9 1.1 General characteristics of the Acidithiobacillus genus 9 1.1.1 Classification 9 1.1.2 Natural habitats and growth requirements 9 1.1.3 Iron and RISCs in natural and mining environments 10 1.1.4 The sulphur cycle and acidithiobacilli 11 1.1.5 Genetic manipulations in Acidithiobacillus spp. 13 1.1.6 Importance in industry and other applications 14 1.2 Acidithiobacillus spp. RISC and iron oxidation 15 1.2.1 RISC oxidation by Acidithiobacillus spp. 15 1.2.2 A. ferrooxidans iron oxidation and regulation 23 1.3 Mineral sulphide oxidation 26 1.4 Acid mine and rock drainage 30 1.5 Biomining 36 1.5.1 Biomining as an industrial process 36 1.5.2 Acidophilic microorganisms in industrial bioleaching 38 2. AIMS OF THE STUDY 41 3. RESULTS AND DISCUSSION 43 4. CONCLUSIONS 51 5. ACKNOWLEDGMENTS 53 6. REFERENCES 55 7. PAPERS 75 3 4 ABSTRACT Bacteria from the genus Acidithiobacillus are often associated with biomining and acid mine drainage. Biomining utilises acidophilic, sulphur and iron oxidising microorganisms for recovery of metals from sulphidic low grade ores and concentrates. Acid mine drainage results in acidification and contamination with metals of soil and water emanating from the dissolution of metal sulphides from deposits and mine waste storage. Acidophilic microorganisms play a central role in these processes by catalysing aerobic oxidation of sulphides.
    [Show full text]
  • The Ways to Increase Efficiency of Soil Bioremediation
    DOI: 10.1515/eces-2016-0011 ECOL CHEM ENG S. 2016;23(1):155-174 El żbieta WOŁEJKO 1*, Urszula WYDRO 1 and Tadeusz ŁOBODA 1 THE WAYS TO INCREASE EFFICIENCY OF SOIL BIOREMEDIATION SPOSOBY ZWI ĘKSZENIA EFEKTYWNO ŚCI BIOREMEDIACJI GLEB Abstract: The aim of this paper was to present possibilities of using different substrates to assist the bioremediation of soils contaminated with heavy metals, pesticides and other substances. Today's bioengineering offers many solutions that enable the effective conduct of biological remediation, including both biostimulation and bioaugmentation. For this purpose, they are used to enrich various organic substances, sorbents, microbiological and enzymatic preparations, chemical substances of natural origin or nanoparticles. The use of genetic engineering as a tool to obtain microorganisms and plants capable of efficient degradation of pollutants may cause the risks that entails the introduction of transgenic plants and microorganisms into the environment. In order to determine the efficacy and possible effects of the various bioremediation techniques, it is required to conduct many studies and projects on a larger scale than only in the laboratory. Furthermore, it should be emphasized that bioremediation involves interdisciplinary issues and therefore, there is a need to combine knowledge from different disciplines, such as: microbiology, biochemistry, ecology, environmental engineering and process engineering. Keywords: bioremediation, phytoremediation, soil, heavy metals, organic pollutants Introduction
    [Show full text]
  • Arsenic-Transforming Microbes and Their Role in Biomining Processes
    Environ Sci Pollut Res (2013) 20:7728–7739 DOI 10.1007/s11356-012-1449-0 MINING AND THE ENVIRONMENT - UNDERSTANDING PROCESSES, ASSESSING IMPACTS AND DEVELOPING REMEDIATION Arsenic-transforming microbes and their role in biomining processes L. Drewniak & A. Sklodowska Received: 15 October 2012 /Accepted: 19 December 2012 /Published online: 9 January 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract It is well known that microorganisms can dissolve Introduction different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital An ongoing challenge for the mining industry is the elements (e.g., P, Fe, S, Mg and Mo), but some may also development and application of efficient, low-cost and contain toxic metals or metalloids, like arsenic. The toxicity environmentally friendly methods of metal recovery. of arsenic is disclosed after the dissolution of the mineral, Considerable effort is currently devoted to the improve- which raises two important questions: (1) why do micro- ment of existing technologies, particularly those intended organisms dissolve arsenic-bearing minerals and release this for (1) metal recovery from low-grade ores, which has metal into the environment in a toxic (also for themselves) not been economic for many years, and (2) mine and form, and (2) How do these microorganisms cope with this wastewater treatment. A well-recognized way of extract- toxic element? In this review, we summarize current knowl- ing metals from mineral resources not accessible by edge about arsenic-transforming microbes and their role in conventional mining is the use of methods based on biomining processes.
    [Show full text]
  • Biomining for In-Situ Resource Utilization
    Biomining for In-Situ Resource Utilization Darin Ragozzine Harvard University ’03-’05-’04 NASA Institute for Advanced Concepts Student Visions of the Future Program Advisor: Dr. Sarah Stewart Outline • Concept • Overview of Biomining and Bacteria • Extraterrestrial Biomining • Future Engineering • Advantages of Space Biomining • Applications to Potential Space Missions • Conclusions Darin Ragozzine NIAC Student Fellow March 23, 2004 Concept Proposal Use chemolithotrophic bacteria to mine extraterrestrial regolith for metals and other materials needed for In-Situ Resource Utilization. Darin Ragozzine NIAC Student Fellow March 23, 2004 Overview of Terrestrial Biomining • Produces over ¼ of the world’s copper – Mostly through passive “Heap leaching” • Pretreat some gold ores (biobeneficiation) – Stirred tanks = bioreactors • Biohydrometallurgy and Geomicrobiology – Lots of research and published information Darin Ragozzine NIAC Student Fellow March 23, 2004 About the Bacteria • Mostly Thiobacillus Ferrooxidans, Thiobacillus Thiooxidans, and Leptospirillum Ferrooxidans – Anaerobic – Autochemotrophic – Lithotrophic – Acidophiles (pH ~2-3) Darin Ragozzine NIAC Student Fellow March 23, 2004 About the Bacteria • Oxidize Fe(II) and (indirectly?) other metal sulfides • Oxygen is used as the final electron acceptor • Need relatively small amount of nutrients – Most nutrients are found in ores naturally – Carbon can be infused through CO2 gas • Studies show that extraterrestrial materials (meteors) are biofriendly Darin Ragozzine NIAC Student Fellow
    [Show full text]
  • Engineering Microbial Consortia to Enhance Biomining and Bioremediation
    MINI REVIEW ARTICLE published: 05 June 2012 doi: 10.3389/fmicb.2012.00203 Engineering microbial consortia to enhance biomining and bioremediation Karl D. Brune andTravis S. Bayer* Centre for Synthetic Biology and Innovation, Division of Molecular Biosciences, Imperial College London, London, UK Edited by: In natural environments microorganisms commonly exist as communities of multiple Weiwen Zhang, Tianjin University, species that are capable of performing more varied and complicated tasks than clonal China populations. Synthetic biologists have engineered clonal populations with characteristics Reviewed by: such as differentiation, memory, and pattern formation, which are usually associated with Romy Chakraborty, Lawrence Berkeley National Lab, USA more complex multicellular organisms. The prospect of designing microbial communities Lei Chen, Tianjin University, China has alluring possibilities for environmental, biomedical, and energy applications, and is likely *Correspondence: to reveal insight into how natural microbial consortia function. Cell signaling and commu- Travis S. Bayer, Centre for Synthetic nication pathways between different species are likely to be key processes for designing Biology and Innovation, Division of novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic Molecular Biosciences, Imperial College London, London SW7 2AZ, microbial interactions will be reviewed here, with particular emphasis given to research UK. e-mail: [email protected] with significance for industrial applications
    [Show full text]