United States Patent Office Patented Sept

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Sept 2,717,871 United States Patent Office Patented Sept. 13, 1955 2 pure form by a suitable procedure. Numerous other 2,717,871 derivatives can be made from these initial derivatives. ELECTROCHEMICAL PRODUCTION OF FLUCR0. Unsaturated acids as well as saturated acids can be used CARBON ACID FLUORE)E DERVATIVES as starting compounds and saturation is produced by Harold M. Scholberg, St. Paul, Min, and fugh G. 5 fluorine addition during the electrochemical fluorination. Bryce, Hudson, Wis., assignors to Minnesota Mining The electrochemical process is not limited to the pro & Manufacturing Company, St. Paul, Minn., a corpo" duction of monocarboxylate compounds. The hydrocar ration of Delaware bon polycarboxylic acids (and their anhydrides) can be fluorinated to produce the corresponding fluorocarbon acid No Drawing. Application February 1, 1952, fluorides, the hydrogen atoms and the hydroxyl groups Serial No. 269,584 of the starting acid being replaced by fluorine atoms. The fluorocarbon acid fluorides can be generically represented 3 Claims. (Cl. 204-59) by the formula: This invention relates to our discovery of a new and Rf (COF)m useful process of making saturated fluorocarbon acid fluo where n is an integer having a value of 1 for monocar rides, which are converted to derivatives thereof and re boxylic acid fluorides, a value of 2 for dicarboxylic acid covered as such. It is an improvement upon the electro fluorides, etc. chemical procedures described in the U.S. patents of J. H. The process as heretofore described and used, outlined Simons, No. 2,519,983 (August 22, 1950), and A. R. above, has the economic disadvantage of producing rela Diesslin, E. A. Kauck and J. H. Simons, No. 2,567,011 20 tively low yields of the fluorocarbon acid fluoride com (September 4, 1951), and further described in a paper pound corresponding to the hydrocarbon acid (or its an by E. A. Kauck and A. R. Diesslin, published by the hydride) used as the starting compound. Even in the American Chemical Society in Industrial and Engineer most favorable case, the production of trifluoroacetyl fluo ing Chemistry, vol.43, pp. 2332-2334 (October 1951). ride (CF3COF) from acetic acid (CH3COOH) or its an These references describe an electrochemical fluorina hydride, the consumed acid starting compound is less than tion process of making saturated fluorocarbon acid fluo 50% converted to CF3COF, due to molecular fragmenta rides, which (in the case of monocarboxylic acid fluorides) tion and partial fluorination resulting in substantial yields can be represented by the formulas RfCOF or of CF4, CF3H, OF2, COF2 and CO2. In the case of higher acids, still other by-product compounds are produced and 22 the yield of the desired acid fluoride (corresponding to the RfC starting compound) decreases rapidly with increase in Yp number of carbon atoms. The situation is even more where Rf stands for a saturated fluorocarbon group (cyclic unfavorable in the case of polycarboxylate compounds. or non-cyclic) consisting solely of carbon and fluorine. The yields when using hydrocarbon acids as starting com The non-cyclic (aliphatic) compounds have the formula: pounds are materially lower than when using the anhy CF-1COF, and the cyclic compounds have the for drides of the acids as starting compounds. These observa mula: CaF2n-1COF. These compounds may also be tions are based on a great many laboratory and pilot plant termed saturated perfluorocarboxylic acid fluorides, and runs by Minnesota Mining & Manufacturing Company saturated perfluoroacyl fluorides. 4) (St. Paul, Minnesota) wherein numerous operating vari ables and expedients have been studied in the attempt to electrolyzingThe procedure a current-conducting described in these solution references comprising involves an improve yields. hydrous liquid hydrogen fluoride to which has been added The importance of this from the commercial produc a hydrocarbon carboxylic acid (or its anhydride), by pass tion standpoint is apparent in view of the high prices which ing direct-current through the solution at a cell voltage it has been necessary to charge for fluorocarbon com which is insufficient to generate molecular (free elemen 45 pounds and which have seriously limited their acceptance tal) fluorine under the existing conditions, but which is except for special applications. It has been necessary to sufficient to cause the formation of the desired fully fluo charge from $10.00 per pound to $50.00 per pound and rinated acid fluoride at a useful rate. Use is made of a upwards for fluorocarbon acids. single-compartment cell without diaphragms. The elec It is evident, therefore, that any innovation which can trode pack consists of alternating and closely-spaced iron materially increase the yields of the electrochemical proc and nickel plates, serving as cathode and anode electrodes, ess is of great value in promoting the usage of fluorocar respectively. The cell can be conveniently operated at bon compounds, which are unique and have many fields substantially atmospheric pressure and at temperatures in of utility that could be served if not too expensive. the neighborhood of 0 to 20 C. The applied cell voltage We have discovered a modification of the above-de is approximately 5 to 6 volts. 55 scribed process by which, as the result of using different The fluorocarbon acid fluoride product of the cell op starting compounds, the yields of trifluoroacetyl fluoride eration is relatively insoluble in the electrolyte solution can be substantially doubled, and the yields of higher com and either settles to the bottom of the cell from which it pounds can be improved in an even greater ratio, as can be drained with other fluorocarbon products of the compared with the yields obtained when using the an process, or is volatilized and evolves from the cell in ad 60 hydrides of hydrocarbon acids as starting compounds. mixture with the hydrogen and other gaseous products, de The improvement is even more marked when comparison pending upon its volatility. The fluorocarbon acid fluoride is made with the use of hydrocarbon acids as starting com compounds are very reactive and the normal procedure is pounds. Furthermore, the acid fluoride product yield to promptly convert them to derivatives without isolating per unit of electrical energy (electrical efficiency) is more them first in pure form, and recovering the derivatives. A than doubled. A further advantage of the present pro cell product mixture containing the fluorocarbon acid fluo cedure is that there is no formation of OF2 (oxygen fluo ride can be hydrolyzed with water to produce the corre ride), apart from what may be formed from impurities, sponding fluorocarbon acid (RCOOH), or can be reacted and the formation of COF2 (caronby fluoride) is mark with ammonia to produce the amide (RfCONH2), or can edly decreased. 70 In this new procedure, we employ as the starting com be reacted with an alcohol to produce an ester (RfCOOR), pound the acid fluoride of the hydrocarbon carboxylic for example. The derivative can then be recovered in acid, that is, the hydrocarbon acyl fluoride, rather than 2,717,871 4. 3 without the need of any other material. Regardless of the acid itself (or its anhydride). Despite the higher scientific speculation as to the whys and wherefores, the cost of the acid fluoride as compared with the acid (or its practical usage of the process can in any case be Success anhydride) there is a very substantial net economic gain fully accomplished by providing a current-conducting because of the extent of gain in the yield and in the solution, a conductivity additive being used when found electrical efficiency. to be needed or desirable. According to one procedure the hydrocarbon acid fluo It was a surprising discovery that very high yields and ride starting compound is directly added to the liquid efficiencies can be obtained when using acetyl fluoride HF of the cell. It is converted by the electrochemical as the starting compound in conjunction with a con process to the corresponding fluorocarbon acid fluoride ductivity additive, since previously it had been the ex compound as indicated by: perience that the non-ionizable organic starting com pounds (that require the use of an additive to provide a where R is a hydrocarbon group (saturated or unsatu carrier electrolyte) cannot be electrochemically fluori rated), Rf is the corresponding saturated fluorocarbon nated in as high yields and efficiencies as can those which group (resulting from complete fluorination), and m is an ionize in the HiF and per se provide adequate conductivity. integer. J. H. Simons had published a negative report on evidence Another procedure is to add the corresponding hydro of formation of trifluoroacetyl fluoride (CF3COF) by the carbon acid chloride compound to the liquid HF (either electrochemical process, using acetyl chloride (CH3COCl) before or after the latter is introduced into the cell), as the starting compound in conjunction with sodium 2 : fiuoride to provide conductivity (J. H. Simons et al., whereupon reaction occurs (even when no current is flow Journal of the Electrochemical Society, vol. 95, No. 2, ing) by which the chlorine atoms are replaced by fluo February 1949, pp. 47-67, see especially pp. 53-54). The rine atoms, with evolution of HCl, resulting in a solution particular circumstances of his laboratory experiment were of hydrocarbon acid fluoride in the liquid HF. The HCl quite different from the operating conditions and pro is insoluble in the liquid HF and is released as fast as cedures of the electrochemical process as employed in our formed. As before, electrochemical fluorination then re- 2 work and in plant operations. sults in the production of the fluorocarbon acid fluoride The reality of the substantial increase in yield obtained product. These two steps can be indicated by: by our process, and of the reduction in manufacturing cost, has been demonstrated by many laboratory experi ments and pilot plant runs wherein all other variables This two step procedure has an advantage in many cases were kept as constant as possible in making comparisons.
Recommended publications
  • "Fluorine Compounds, Organic," In: Ullmann's Encyclopedia Of
    Article No : a11_349 Fluorine Compounds, Organic GU¨ NTER SIEGEMUND, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany WERNER SCHWERTFEGER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany ANDREW FEIRING, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States BRUCE SMART, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States FRED BEHR, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States HERWARD VOGEL, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States BLAINE MCKUSICK, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States 1. Introduction....................... 444 8. Fluorinated Carboxylic Acids and 2. Production Processes ................ 445 Fluorinated Alkanesulfonic Acids ...... 470 2.1. Substitution of Hydrogen............. 445 8.1. Fluorinated Carboxylic Acids ......... 470 2.2. Halogen – Fluorine Exchange ......... 446 8.1.1. Fluorinated Acetic Acids .............. 470 2.3. Synthesis from Fluorinated Synthons ... 447 8.1.2. Long-Chain Perfluorocarboxylic Acids .... 470 2.4. Addition of Hydrogen Fluoride to 8.1.3. Fluorinated Dicarboxylic Acids ......... 472 Unsaturated Bonds ................. 447 8.1.4. Tetrafluoroethylene – Perfluorovinyl Ether 2.5. Miscellaneous Methods .............. 447 Copolymers with Carboxylic Acid Groups . 472 2.6. Purification and Analysis ............. 447 8.2. Fluorinated Alkanesulfonic Acids ...... 472 3. Fluorinated Alkanes................. 448 8.2.1. Perfluoroalkanesulfonic Acids
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • BF3 Catalyzed Acetylation of Butylbenzene BF3 Katalysierte Acetylierung Von Butylbenzol Acetylation De Butylbenzene Catalysee Par BF3
    Patentamt Europaisches ||| || 1 1| || || ||| || || || || || ||| || (19) J European Patent Office Office europeen des brevets (1 1 ) EP 0 488 638 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publicationation and mention (51 ) |nt. CI.6: C07C 45/46, C07C 49/76 of the grant of the patent: 02.01.1997 Bulletin 1997/01 (21) Application number: 91310859.3 (22) Dateof filing: 26.11.1991 (54) BF3 catalyzed acetylation of butylbenzene BF3 katalysierte Acetylierung von Butylbenzol Acetylation de butylbenzene catalysee par BF3 (84) Designated Contracting States: (74) Representative: De Minvielle-Devaux, Ian CH DE ES FR GB IT LI NL Benedict Peter et al CARPMAELS & RANSFORD (30) Priority: 27.11.1990 US 619157 43, Bloomsbury Square London WC1 A 2RA(GB) (43) Date of publication of application: 03.06.1992 Bulletin 1992/23 (56) References cited: EP-A-0 361 119 GB-A-2102 420 (73) Proprietor: HOECHST CELANESE US-A- 2 245 721 CORPORATION Somerville, N.J. 08876 (US) • World Patent Index database, Derwent Publ. London GB. Accession no. 73-433940, Derwent (72) Inventor: Lindley, Charlet R. week 7331 & SU-A-362845 (00.00.00) (Irkutsk Portland, Texas (US) Organic Chemistry Institute) CO CO CO CO CO CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in o a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
    [Show full text]
  • Rpt POL-TOXIC AIR POLLUTANTS 98 BY
    SWCAA TOXIC AIR POLLUTANTS '98 by CAS ASIL TAP SQER CAS No HAP POLLUTANT NAME HAP CAT 24hr ug/m3 Ann ug/m3 Class lbs/yr lbs/hr none17 BN 1750 0.20 ALUMINUM compounds none0.00023 AY None None ARSENIC compounds (E649418) ARSENIC COMPOUNDS none0.12 AY 20 None BENZENE, TOLUENE, ETHYLBENZENE, XYLENES BENZENE none0.12 AY 20 None BTEX BENZENE none0.000083 AY None None CHROMIUM (VI) compounds CHROMIUM COMPOUN none0.000083 AY None None CHROMIUM compounds (E649962) CHROMIUM COMPOUN none0.0016 AY 0.5 None COKE OVEN COMPOUNDS (E649830) - CAA 112B COKE OVEN EMISSIONS none3.3 BN 175 0.02 COPPER compounds none0.67 BN 175 0.02 COTTON DUST (raw) none17 BY 1,750 0.20 CYANIDE compounds CYANIDE COMPOUNDS none33 BN 5,250 0.60 FIBROUS GLASS DUST none33 BY 5,250 0.60 FINE MINERAL FIBERS FINE MINERAL FIBERS none8.3 BN 175 0.20 FLUORIDES, as F, containing fluoride, NOS none0.00000003 AY None None FURANS, NITRO- DIOXINS/FURANS none5900 BY 43,748 5.0 HEXANE, other isomers none3.3 BN 175 0.02 IRON SALTS, soluble as Fe none00 AN None None ISOPROPYL OILS none0.5 AY None None LEAD compounds (E650002) LEAD COMPOUNDS none0.4 BY 175 0.02 MANGANESE compounds (E650010) MANGANESE COMPOU none0.33 BY 175 0.02 MERCURY compounds (E650028) MERCURY COMPOUND none33 BY 5,250 0.60 MINERAL FIBERS ((fine), incl glass, glass wool, rock wool, slag w FINE MINERAL FIBERS none0.0021 AY 0.5 None NICKEL 59 (NY059280) NICKEL COMPOUNDS none0.0021 AY 0.5 None NICKEL compounds (E650036) NICKEL COMPOUNDS none0.00000003 AY None None NITROFURANS (nitrofurans furazolidone) DIOXINS/FURANS none0.0013
    [Show full text]
  • Modelling and Synthesis of Pharmaceutical Processes: Moving from Batch to Continuous
    Downloaded from orbit.dtu.dk on: Dec 18, 2017 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Papadakis, Emmanouil; Gani, Rafiqul; Woodley, John Publication date: 2016 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Papadakis, E., Gani, R., & Woodley, J. (2016). Modelling and synthesis of pharmaceutical processes: moving from batch to continuous. Kgs. Lyngby: Technical University of Denmark (DTU). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 2016 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous to batch from moving pharmaceutical processes: of Modelling and synthesis Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Emmanouil Papadakis PhD Thesis September 2016 Department of Chemical and Biochemical Engineering Technical University of Denmark Søltofts Plads, Building 229 2800 Kgs. Lyngby Emmanouil Papadakis Denmark Phone: +45 45 25 28 00 Web: www.kt.dtu.dk/ Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Doctor of Philosophy Thesis Emmanouil Papadakis KT-Consortium Department of Chemical and Biochemical Engineering Technical University of Denmark Kgs.
    [Show full text]
  • 6 CCR 1010-6 [Editor’S Notes Follow the Text of the Rules at the End of This CCR Document.]
    DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT Division of Environmental Health and Sustainability RULES AND REGULATIONS GOVERNING SCHOOLS IN THE STATE OF COLORADO 6 CCR 1010-6 [Editor’s Notes follow the text of the rules at the end of this CCR Document.] _________________________________________________________________________ 6.1 Authority This regulation is adopted pursuant to the authority in Sections 25-1-108(1)(c)(I), 25-1.5-101(1)(a),(h), (k), and (l), and 25-1.5-102(1)(a) and (d), Colorado Revised Statute (C.R.S.), and is consistent with the requirements of the State Administrative Procedures Act, Section 24-4-101, et seq., C.R.S. 6.2 Scope and Purpose A. This regulation establishes provisions governing: 1. Minimum sanitation requirements for the operation and maintenance of schools; 2. Minimum standards for exposure to toxic materials and environmental conditions in order to safeguard the health of the school occupants and the general public; and 3. Investigation, control, abatement and elimination of sources causing epidemic and communicable diseases affecting school occupants and public health. B. This regulation does not apply to: 1. Structures or facilities used by a religious, fraternal, political or social organization exclusively for worship, religious instructional or entertainment purposes pertaining to that organization; 2. Health facilities licensed by the Colorado Department of Public Health and Environment under provisions of Section 25-3-101, C.R.S.; and 3. Child care facilities licensed by the Colorado Department of Human Services under provisions of Sections 26-6-102(1.5), (2.5)(a), (5), (5.1), (8), (9), (10)(a), C.R.S.
    [Show full text]
  • Ep 0250206 A2
    Europaisches Patentamt 0 250 206 J European Patent Office © Publication number: A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 87305325.0 © int. CIA C07C 102/00 , C07C 103/38 , C07C 45/46 , C07C 131/00 @ Date of filing: 16.06.87 © Priority: 17.06.86 US 875142 © Applicant: CELANESE CORPORATION 1211 Avenue of the Americas @ Date of publication of application: New York New York 10036(US) 23.12.87 Bulletin 87/52 @ Inventor: Davenport, Kenneth G. © Designated Contracting States: 3126 Crestwater AT BE CH DE ES FR GB GR IT LI LU NL SE Corpus Christi Texas, 7841 5(US) Inventor: Hilton, Charles B. 1305 Cliffwood Road Euless Texas, 76040(US) © Representative: De Minvielle-Oevaux, Ian Benedict Peter et al CARPMAELS & RANSFORD 43, Bloomsbury Square London WC1A 2RA(GB) © Process for producing N,O-diacetyl-6-amino-2-naphthol. © N,O-diacetyl-6-amino-2-naphthol is produced by subjecting 2-naphthyl acetate to a Fries rearrangement or 2- naphthol and an acetylating agent to a Friedel-Crafts acetylation to form 6-hydroxy-2-acetonaphthone which is then reacted as is or as its acetate ester with hydroxylamine or a hydroxylamine salt to form 6-hydroxy-2- acetonaphthone oxime. The oxime is then subjected to a Beckmann rearrangement and accompanying acetylation with acetic anhydride to form the N,O-diacetyl-6-amino-2-naphthol. < CO o w © CM 0_ LU Xerox Copy Centre 0 250 206 PROCESS FOR PRODUCING N,O-DIACETYL-6-AMINO-2-NAPHTHOL This invention relates to an integrated process for the production of N,O-diacetyl-6-amino-2-naphthol (NODAN), from 2-naphthyl acetate, or 2-naphthol and an acetylating agent as the starting material.
    [Show full text]
  • Modelling and Synthesis of Pharmaceutical Processes: Moving from Batch to Continuous
    Downloaded from orbit.dtu.dk on: Dec 23, 2016 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Papadakis, Emmanouil; Gani, Rafiqul; Woodley, John Publication date: 2016 Document Version Peer reviewed version Link to publication Citation (APA): Papadakis, E., Gani, R., & Woodley, J. (2016). Modelling and synthesis of pharmaceutical processes: moving from batch to continuous. Kgs. Lyngby: Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 2016 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous to batch from moving pharmaceutical processes: of Modelling and synthesis Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Emmanouil Papadakis PhD Thesis September 2016 Department of Chemical and Biochemical Engineering Technical University of Denmark Søltofts Plads, Building 229 2800 Kgs. Lyngby Emmanouil Papadakis Denmark Phone: +45 45 25 28 00 Web: www.kt.dtu.dk/ Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Doctor of Philosophy Thesis Emmanouil Papadakis KT-Consortium Department of Chemical and Biochemical Engineering Technical University of Denmark Kgs.
    [Show full text]
  • Acetic Acid Toxic
    Chemical Waste Name or Mixtures: Listed Characteristic Additional Info Disposal Notes (-)-B- bromodiisopropinocampheyl (-)-DIP-Bromide Non Hazardous None liquid: sanitary sewer/ solid: trash borane (-)-B- chlorodiisopropinocampheylb (-)-DIP-Chloride Non Hazardous None liquid: sanitary sewer/ solid: trash orane [(-)-2-(2,4,55,7-tetranitro-9- fluorenyodeneaminooxy)pro (-)-TAPA Non Hazardous None liquid: sanitary sewer/ solid: trash pionic acid] (+)-B- bromodiisopropinocampheyl (+)-DIP-Bromide Non Hazardous None liquid: sanitary sewer/ solid: trash borane (+)-B- chlorodiisopropinocampheylb (+)-DIP-Chloride Non Hazardous None liquid: sanitary sewer/ solid: trash orane [(+)-2-(2,4,55,7-tetranitro-9- fluorenylideneaminooxy)prop (+)-TAPA Non Hazardous None liquid: sanitary sewer/ solid: trash ionic acid] (2,4,5-Trichlorophenoxy) Acetic Acid Toxic None EHS NA (2,4-Dichlorophenoxy) Acetic Acid Toxic None EHS NA trans-8,trans-10-dodecadien- (E,E)-8,10-DDDA Non Hazardous None liquid: sanitary sewer/ solid: trash 1-ol trans-8,trans-10-dodecadien- (E,E)-8,10-DDDOL Non Hazardous None liquid: sanitary sewer/ solid: trash 1-yl acetate trans-7,cis-9-dodecadien-yl (E,Z)-7,9-DDDA Non Hazardous None liquid: sanitary sewer/ solid: trash acetate (Hydroxypropyl)methyl Cellulose Non Hazardous None liquid: sanitary sewer/ solid: trash NA ammonium phosphate (NH4)2HPO4 Non Hazardous None liquid: sanitary sewer/ solid: trash (dibasic) (NH4)2SO4 Non Hazardous None liquid: sanitary sewer/ solid: trash ammonium sulfate ammonium phosphate (NH4)3PO4 Non Hazardous None
    [Show full text]
  • Process for Producing Acetyl-Substituted Aromatic
    turopaisches Patentamt European Patent Office © Publication number: 0 21 5 351 Office europeen des brevets A2 <2> EUROPEAN PATENT APPLICATION © Application number: 86111905.5 © int. CI.4: C07C 45/46 C07C , 49/76 , C07C 49/788 C07C 49/825 ®r\ Daten of 28'08-86„ , , f,l,n9: C07C 49/83 , C07C 49/84 © Priority: 31.08.85 JP 191521/85 © Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC. © Date of publication of application: 5-2, Marunouchi 2-chome Chiyoda-Ku 25.03.87 Bulletin 87/13 Tokyo(JP) © Designated Contracting States: @ Inventor: Fujiyama, Susumu DE FR GB IT NL 522-65, Kamitomii Kurashiki-shi(JP) Inventor: Matsumoto, Shunichi 1168-3, Tanoue Kurashiki-shi(JP) Inventor: Yanagawa, Tatsuhiko 1987, Nakashima Kurashiki-shi(JP) © Representative: Patentanwalte Griinecker, Kinkeldey, Stockmair & Partner Maximilianstrasse 58 D-8000 Munchen 22{DE) Process for producing acetyi-substituted aromatic compound. v=y This invention provides a process for producing an acetyi-substituted aromatic compound by making an aromatic compound react with acetyl fluoride in the presence of substantially anhydrous hydrogen fluoride as a catalyst. M It has been already known to acylate- an ar- ^omatic compound with an acid fluoride in the pres- ence of boron fluoride or hydrogen fluoride and O boron fluoride as a catalyst. It has been found that, *^in a reaction of an aromatic compound with acetyl fjfluoride, even when hydrogen fluoride alone is used ■as a catalyst, the intended acetyi-substituted ar- ^omatic compound can be obtained in excellent yield 5 and further the complex compound formed can be ^decomposed without difficulty and the hydrogen flu- yoride catalyst can be easily recovered.
    [Show full text]
  • Modelling and Synthesis of Pharmaceutical Processes: Moving from Batch to Continuous
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Papadakis, Emmanouil Publication date: 2016 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Papadakis, E. (2016). Modelling and synthesis of pharmaceutical processes: moving from batch to continuous. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 2016 Modelling and synthesis of pharmaceutical processes: moving from batch to continuous to batch from moving pharmaceutical processes: of Modelling and synthesis Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Emmanouil Papadakis PhD Thesis September 2016 Department of Chemical and Biochemical Engineering Technical University of Denmark Søltofts Plads, Building 229 2800 Kgs. Lyngby Emmanouil Papadakis Denmark Phone: +45 45 25 28 00 Web: www.kt.dtu.dk/ Modelling and synthesis of pharmaceutical processes: moving from batch to continuous Doctor of Philosophy Thesis Emmanouil Papadakis KT-Consortium Department of Chemical and Biochemical Engineering Technical University of Denmark Kgs.
    [Show full text]
  • (Ug/M3) Long-Term ESL (Ppb) Date Derived Status Short
    Long-term Short-term ESL Short-term ESL Long-term ESL ESL Substance CASNo. (ug/m3) (ppb) (ug/m3) (ppb) Date Derived Status Short-term ESL Basis Long-term ESL Basis ((2-(Dimethylamino)ethyl)methylamino)-ethanol, 2- 2212-32-0 50 -- 5 -- 8/19/2010 Interim Health Health ([dimethylamino] methyl) phenol 25338-55-0 190 -- 19 -- 4/19/2004 Interim Health Health (2-nitrobutyl) morpholine, 4- 2224-44-4 200 -- 20 -- 4/14/2004 Interim Health Health (3-dimethylamino) propylhexahydro-s-triazine, 1,3,5-tris 15875-13-5 50 (PM10) -- 5 (PM10) -- 3/25/2004 Interim Health Health (4-Methylphenylimino)diethanol, 2,2'- 3077-12-1 50 (PM10) -- 5 (PM10) -- 10/28/2010 Interim Health Health (dimethylamino)-3,5-xylyl methylcarbamate, 4- 315-18-4 5 -- 0.5 -- 10/1/2003 Interim Health Health (dimethylbutyl, 1,3-) -n'-phenylenediamine, n- 793-24-8 10 -- 1 -- 3/30/2001 Interim Health Health (ethyl-2-nitrotrimethylene, 2-) dimorpholine, 4,4- 1854-23-5 200 -- 20 -- 11/10/2000 Interim Health Health (hydroxyethyl, 2-)-3-methoxy propanamide, n- (MHPA) 35544-45-7 700 -- 70 -- 2/16/2001 Interim Health Health (imidazole, 1H-) -1-ethanamine, 4,5-dihydro-, 2- nornaphthenyl derives 68478-61-5 50 -- 5 -- 5/10/2004 Interim Health Health (imidazolium, 1H), 1-ethyl-4,5-dihydro-3-(2- hydroxyethyl)-2-(8-heptadecnyl)-ethyl sulfate Not assigned 150 -- 15 -- 6/16/1998 Interim Health Health (mercaptopropyl, 3-) triethoxysilane, gamma- (also called EMS) 14814-09-6 50 -- 5 -- 2/17/2004 Interim Health Health (mercaptopropyl, 3-) trimethoxysilane, gamma- (also called MMS) 4420-74-0 50 -- 5 --
    [Show full text]