NASA LANGLEY RESEARCH CENTER 2009 Building the Future in Aerospace and Science

Total Page:16

File Type:pdf, Size:1020Kb

NASA LANGLEY RESEARCH CENTER 2009 Building the Future in Aerospace and Science National Aeronautics and Space Administration EARTH AIR & SPACE NASA LANGLEY RESEARCH CENTER 2009 Building The Future In Aerospace And Science www.nasa.gov Table of Contents Page 4 A Message from the Director ............................................................. 3 Exploration ....................................................................................... 4 ETDP: Developing Technologies for Mission Success ..................... 6 NESC: Real-Time Problem Solving ................................................... 6 Page 7 Success for NASA Flight Tests ......................................................... 7 Aeronautics ...................................................................................... 8 Langley Shares in Seventh Collier Trophy ........................................10 Richard Whitcomb, Passing of an Aeronautical Legend ................. 11 Science ........................................................................................... 12 Page 9 Langley Is A Climate Science Powerhouse ..................................... 14 Systems Analysis ............................................................................ 16 Partnerships .................................................................................... 18 Education and Outreach ................................................................. 20 Page 12 People of Langley ........................................................................... 22 Economic Impact ............................................................................ 24 Virginia Air & Space Center ............................................................. 26 Awards and Patents ........................................................................ 28 Page 16 Looking Forward ............................................................................. 30 Langley’s Leadership ....................................................................... 31 Page 18 Photos in this publication are by Sean Smith, except where noted. The Ares I-X is guided to Pad 39-A at Kennedy Space Center prior to its successful test launch in Oct. Page 20 A message from the Director angley had an incredibly successful Orion crew module, and the launch abort year. Our work lays the foundation system for this flight test. L for the nation’s future in aerospace Langley was selected as the lead for a new and science while making ground- NASA Science mission, Climate Absolute breaking innovative discoveries. I’ll Radiance and Refractivity Observatory or highlight just a few of the Center’s 2009 CLARREO. The mission will enable more research activities here and invite you to accurate detection of climate changes and turn the pages for more details. provide new knowledge to improve climate Three new technologies were tested model forecasts. With CLARREO, NASA through exciting one-of-a kind flight demonstrations and partner organizations will monitor the pulse of the this past year. The Inflatable Re-entry Vehicle atmosphere to better understand climate change. Experiment or IRVE was successfully launched In July, we also broke ground on a new building, our from Wallops Flight Facility on the Eastern Shore of first in a series of New Town buildings that will support Virginia in August. This was the first time anyone Langley’s people for years to come. We partnered has successfully flown an inflatable re-entry capsule with the U.S. General Services Administration (GSA) which demonstrated that a spacecraft returning to on the design and construction. The new building Earth can use an inflatable heat shield to survive will be environmentally friendly and energy efficient near hypersonic speed re-entry into the atmosphere. earning a prestigious LEED silver rating as recognized We plan to further explore the inflatable heat shield by the international green building certification technology with future launches at Wallops. system. This efficient building will replace older The Max Launch Abort System or MLAS was also facilities and significantly reduce Center operating successfully tested at Wallops in July. This prototype and maintenance costs. test evaluated an alternative pad-abort concept. We are also very proud that Langley, as part of the The Ares 1-X Flight Test Vehicle was successfully Commercial Aviation Safety Team (CAST), received launched in October at Kennedy Space Center. the aviation community’s highest honor, the 2008 This developmental flight test gathered data on many Collier Trophy, for reducing deadly aircraft accidents aspects of NASA’s new rocket configuration, the first by over 80 percent in ten years. This is the seventh of its kind in over 30 years. NASA and the aerospace Collier that Langley has received and is an indication community learned much about the development of the high value that is placed on our research by and testing of new space launch vehicles from the nation’s aerospace community. designing, building, and launching the vehicle. As we continue to build America’s future in Langley managed systems engineering and vehicle aerospace and science, we appreciate your support integration; developed the guidance, navigation and look forward to sharing more of our and control algorithms; and fabricated the simulated accomplishments with you. An artists concept of an Inflatable Re-entry Vehicle Experiment (IRVE) similar to the one successfully tested at Wallops Flight Facility in August. 5 NASA EXPLORATION Improving Upon a Half-Century of NASA Spaceflight Striking out from familiar homesteads to unknown has provided significant contributions to the larger Ares our expertise in structures, materials, and impact territory has long been a human endeavor. There is V launch vehicle development by conducting studies dynamics analyses, as well as our unique drop testing something innately exciting about the novel and the to understand how the use of advanced technologies capability, Langley played a key role in driving the unexplored. On Earth, that has meant sailing across such as lightweight metallics and advanced composite discussion of trades between water vs. land landing, broad waters to new lands. Now, humankind is materials can improve the performance. resulting in a decision to go with water landing. Given pursuing a far more difficult journey: off-planet to the this decision, Langley secured funds to upgrade its many worlds beyond. Major Contributions to Orion drop test facility to perform water-landing tests to Langley is also playing a key role in the crew-carrying help qualify the Orion crew-module structure. Supporting Ares Development Orion spacecraft, including managing development Langley has also made significant contributions to Carrying a new generation of explorers will be NASA’s of the Orion Launch Abort System, which will fly the the Orion heat shield design, analysis, and testing. Constellation family of space vehicles. Two new launch crew to safety in the event of rocket malfunction or Langley is manufacturing a series of Orion flight vehicles, Ares I and Ares V, form the basis of NASA’s other emergency, and leading the development and test articles, the first of which includes a command Constellation Program. Ares I will deliver the crew- testing of Orion Landing Systems options. Using module mass simulator scheduled to fly on the carrying Orion spacecraft to the International first test of the Launch Abort System. This first Space Station and other destinations in low- test will simulate an abort on the launch pad Earth orbit. Ares V, the larger and higher- and is scheduled for early 2010. payload capable vehicle, is slated to carry Earth-departure craft and the proposed Altair Research for the Future lunar lander into orbit and on to the moon. In addition to providing key support to Langley is responsible for overall vehicle development of the Constellation vehicles, aerodynamics, or how the vehicles will fly, and Langley is leading development of technologies draws upon unique expertise in computational for the next set of vehicles to take us back to the analysis methods and wind tunnel facilities. moon. These technologies include lightweight Critical contributions include collecting, structures such as composites, advanced analyzing and documenting this aerodynamic sensors and controls for safe moon landings, data to support the Ares I design as it moves inflatable materials for building habitats, tools through the normal design process. for predicting harmful radiation, and finally In addition to the key contributions in systems for protecting the astronauts from this aerodynamics, Langley continues to support and other hazards. other key areas such as guidance, navigation Flying Shuttle Safely and control, and structural and thermal Langley continues to play a key role flying analyses for the Ares I Upper Stage. Langley The Orion crew module’s energy-absorbing strut concept was successfully tested in June at Langley’s Landing and Impact Research Facility. the space shuttle by providing real-time 6 technical support to evaluate heating effects during re-entry into the atmosphere, that may result from debris impact damage to shuttle tiles or wing leading edges. Langley has also developed a new measurement technique to obtain real-time, high- resolution temperature measurements of the bottom of the shuttle as it reenters Earth’s atmosphere. This measurement technique has been named HYTHIRM (Hypersonic Thermodynamic Infrared Measurements) and obtains data from a combination of aircraft based and land based sensors, and provides
Recommended publications
  • Nasa Langley Research Center 2012
    National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model.
    [Show full text]
  • NASA TV Schedule for Web (Week of 6-22-2020).Xlsx
    NASA TV Daily Program Schedule Monday - 6/22/2020 Eastern Daylight Time 12 a.m. Way Station to Space: The History of Stennis Space Center 12 a.m. 12:30 a.m. Preparing America for Deep Space (Ep.2) 12:30 a.m. 1 a.m. The Final Shuttle Mission 1 a.m. 1:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 1:30 a.m. 2 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 2 a.m. 2:30 a.m. Space for Women 2:30 a.m. 3 a.m. NASA EDGE - Robotics 3 a.m. 3:30 a.m. No Small Steps 3:30 a.m. 4 a.m. The Time of Apollo 4 a.m. 4:30 a.m. Space Shuttle Era (Ep.3) 4:30 a.m. 5 a.m. KORUS-AQ: Chapter 3/4 5 a.m. 5:30 a.m. Exploration of the Planets (1971) 5:30 a.m. 6 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 6 a.m. 6:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 6:30 a.m. 7 a.m. NASA EDGE - Robotics 7 a.m. 7:30 a.m. ISS Benefits for Humanity (Ep.2) 7:30 a.m. 8 a.m. The Time of Apollo 8 a.m. 8:30 a.m. Space Shuttle Era (Ep.3) 8:30 a.m. 9 a.m. KORUS-AQ: Chapter 3/4 9 a.m. 9:30 a.m. Way Station to Space: The History of Stennis Space Center 9:30 a.m.
    [Show full text]
  • Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-Cost Lagrange-Point Missions
    SSC15-II-5 Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-cost Lagrange-point Missions Chris Pearson, Marissa Stender, Christopher Loghry, Joe Maly, Valentin Ivanitski Moog Integrated Systems 1113 Washington Avenue, Suite 300, Golden, CO, 80401; 303 216 9777, extension 204 [email protected] Mina Cappuccio, Darin Foreman, Ken Galal, David Mauro NASA Ames Research Center PO Box 1000, M/S 213-4, Moffett Field, CA 94035-1000; 650 604 1313 [email protected] Keats Wilkie, Paul Speth, Trevor Jackson, Will Scott NASA Langley Research Center 4 West Taylor Street, Mail Stop 230, Hampton, VA, 23681; 757 864 420 [email protected] ABSTRACT Rideshare is a well proven approach, in both LEO and GEO, enabling low-cost space access through splitting of launch charges between multiple passengers. Demand exists from users to operate payloads at Lagrange points, but a lack of regular rides results in a deficiency in rideshare opportunities. As a result, such mission architectures currently rely on a costly dedicated launch. NASA and Moog have jointly studied the technical feasibility, risk and cost of using an Orbital Maneuvering Vehicle (OMV) to offer Lagrange point rideshare opportunities. This OMV would be launched as a secondary passenger on a commercial rocket into Geostationary Transfer Orbit (GTO) and utilize the Moog ESPA secondary launch adapter. The OMV is effectively a free flying spacecraft comprising a full suite of avionics and a propulsion system capable of performing GTO to Lagrange point transfer via a weak stability boundary orbit. In addition to traditional OMV ’tug’ functionality, scenarios using the OMV to host payloads for operation at the Lagrange points have also been analyzed.
    [Show full text]
  • NASA Langley Research Center Dedicated As Vertical Flight Heritage Site N Friday, May 8 (The W
    NASA Langley Research Center Dedicated as Vertical Flight Heritage Site n Friday, May 8 (the W. F. Durand. The paper states day after Forum 71), “The gravest charge against ONASA Langley Research the helicopter is its lack of hosted a ceremony for the means of making a safe recognition of the Center as descent when the engine has an AHS International Vertical stopped.” It disproved two Flight Heritage Site. The common misperceptions that ceremony featured remarks the parachute effect of the by NASA Administrator, stopped blades or the blades Charles Bolden; Associate spinning backwards could Administrator for Aeronautics, create a safe landing. It then Jaiwon Shin; Acting Center provided a mathematical Director Dave Bowles; US treatment of the principle Congressman Scott Rigell (via of autorotation. This video); the Honorable George principle was later to be a Wallace, Mayor of the City of major feature in Juan de la Hampton; and AHS Executive Cierva’s autogyro work and, Director Mike Hirschberg. Sikorsky YR-4B in the NACA Langley Full Scale Wind Tunnel in 1944. (All eventually, in satisfactory NASA debuted a photos courtesy of NASA) helicopter behavior following historical overview video of a power failure. This 1920 NASA Langley’s rotorcraft be dedicated since AHS began the technical publication even contributions created specifically for the Vertical Flight Heritage Sites Program demonstrated some understanding of event. Administrator Bolden predicted in 2013. The initiative is intended to twist and rotor inflow considerations. the impact that vertical flight aircraft recognize and help preserve sites of Throughout the years, Langley would have on relieving ground traffic the most noteworthy and significant researchers continued exploring the congestion in the future, citing the long contributions made in both the theory complex problem of vertical flight.
    [Show full text]
  • Npl Fact Sheets (Initial Title)
    Region 3: Mid-Atlantic Region Hazardous Site Cleanup Division Serving: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia Recent Additions | Contact Us | Print Version Search: EPA Home > OSWER Home > Region 3 HSCD > Virginia Superfund Sites > Langley Air Force Base > Current Site Information Superfund Current Site Information (NPL Pad) Brownfields / Redevelopment Langley Air Force Base / NASA Langley Initiatives Research Center Administrative Record EPA Region 3 EPA ID# VA2800005033 Last Update: May 2000 Virginia Risk Assessment / Hampton 2nd Congressional District Other Names: None RBC Tables Resources / State Links Current Site Status Specialist Listing Several sites are currently in the remedial investigation/feasibility study (RI/FS) stage. Records of Decision have been signed by Oil Pollution NASA and the EPA for the Area E Warehouse Operable Unit (OU) and the Tabbs Creek OU. Two Records of Decision have been Freedom of signed for the LAFB. Dredging of soils contaminated with PCBs Information Act (Polychlorinated Biphenyls) and PCTs (Polychlorinated Terphenyls) Requests (FOIA) along Tabbs Creek began in December 1999 and should take six to eight months to complete. Site Description The Langley Air Force Base (LAFB)/NASA Langley Research Center (NASA LaRC) site in Hampton, Virginia consists of two Federal facilities. LAFB covers 3,152 acres, has been an airfield and aeronautical research center since 1917, and is the home base for the First Fighter Wing. NASA LaRC is consists of 787 acres and is a research facility that conducts numerous operations in nearly 200 buildings and 40 wind tunnels. Wastes generated at LAFB include petroleum, oils and lubricants, fuels, solvents, paints, pesticides, photographic chemicals, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and heavy metals.
    [Show full text]
  • NASA Langley Research Center
    National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses
    [Show full text]
  • Curriculum Vita
    Ruhai Wang, Ph.D. Professor Graduate Program Coordinator Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 United States E-mail: [email protected] Phone: 409-880-1829 __________________________________________________________ PROFESSIONAL EXPERIENCE ▪ Professor, August 2014 - Present Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA ▪ Associate Professor, July 2007 – June 2014 Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA ▪ Assistant Professor, June 2002 - June 2007 Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA AREAS OF EXPERTISES AND RESEARCH INTERESTS ▪ Computer Networks and Security ▪ Cyber-Physical Systems and Cybersecurity ▪ Satellite/Space Networks and Deep-Space Communications ▪ Delay-/Disruption-Tolerant Networks (DTN) ▪ Intermittent-Connectivity Networks ▪ Wireless and Ad Hoc Networks HIGHEST DEGREE EARNED Ph.D. in Electrical/Computer Engineering August 2001 ▪ New Mexico State University, Las Cruces, New Mexico, USA ▪ Advisor: Dr. Stephen Horan (Currently a Principal Investigator at NASA Langley Research Center) HIGHLIGHT OF PROFESSIONAL ACTIVITIES (1) Associate Editor, IEEE Transactions on Aerospace & Electronics Systems, 2018-Present (2) Associate Editor, IEEE Aerospace & Electronics Systems Magazine, January 2012-Present (3) Member, The Teaching Board of PhD Program in Science and Technology for Electronic and Telecommunication (STIET), University of Genova, Italy, 2018-Present (4) Named as “Best Associate Editor” of IEEE Aerospace & Electronics Systems Magazine, 2015 (5) Associate Editor, Wiley InterScience’s Wireless Communications and Mobile Computing Journal, Aug. 1 2006-2010 (6) Guest Editor, IEEE Aerospace & Electronics Systems Magazine Special Issue on “Recent Trends in Interplanetary Communications Systems”, 2010. (7) Associate Editor, Journal of Computer Systems, Networks, and Communications (JCSNC), July 2007-July 2011.
    [Show full text]
  • Technology Demonstration Mission Program
    National Aeronautics and Space Administration Technology Demonstration Mission Program Volume 1, Issue 1 The Bridge January–February 2013 An artist’s rendering of the Ball smallsat, set to carry the Green Propellant Infusion Green Propellant Infusion Mission to space for flight-testing in 2015. Mission Joins TDM With this award, NASA has expanded (Image: Ball Aerospace) Project Family the scope of TDM to pursue environ- mentally friendly technologies. Mission Late last summer, NASA selected researchers will deliver a cheaper, safer, NASA’s Supersonic Ball Aerospace & Technologies Corp. more powerful alternative to the toxic, of Boulder, Colo., to lead its newest corrosive propellant hydrazine. Decelerator Project Technology Demonstration Mission ‘On Track’ for Success project: the Green Propellant Infusion Read all about the newest TDM project NASA has completed three key Mission. here. milestones in its development of new atmospheric deceleration technologies MEDLI On the ‘EDGE’ Data from the sensors, now being to support exploration missions across studied by MEDLI researchers, will the solar system. The Mars Science Laboratory Entry, help NASA engineers design safer, Descent & Landing Instrumentation, more lightweight entry systems for The Low-Density Supersonic Decel- or MEDLI, was the subject of a recent future Mars missions — ones carry- erator project, which is developing video feature by NASA EDGE, the ing human crews as well as robotic technologies to use atmospheric agency’s offbeat, informative video- explorers. drag to dramatically slow a vehicle podcast series. as it penetrates the skies over worlds Watch the complete NASA EDGE feature beyond our own, completed three NASA EDGE visited the MEDLI team on MEDLI here.
    [Show full text]
  • Project Mercury Fact Sheet
    NASA Facts National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 April 1996 FS-1996-04-29-LaRC ___________________________________________________________________________ Langley’s Role in Project Mercury Project Mercury Thirty-five years ago on May 5, 1961, Alan Shepard was propelled into space aboard the Mercury capsule Freedom 7. His 15-minute suborbital flight was part of Project Mercury, the United States’ first man-in-space program. The objectives of the Mer- cury program, eight unmanned flights and six manned flights from 1961 to 1963, were quite specific: To orbit a manned spacecraft around the Earth, investigate man’s ability to function in space, and to recover both man and spacecraft safely. Project Mercury included the first Earth orbital flight made by an American, John Glenn in February 1962. The five-year program was a modest first step. Shepard’s flight had been overshadowed by Russian Yuri Gagarin’s orbital mission just three weeks earlier. President Kennedy and the Congress were NASA Langley Research Center photo #59-8027 concerned that America catch up with the Soviets. Langley researchers conduct an impact study test of the Seizing the moment created by Shepard’s success, on Mercury capsule in the Back River in Hampton, Va. May 25, 1961, the President made his stirring chal- lenge to the nation –– that the United States commit Langley Research Center, established in 1917 itself to landing a man on the moon and returning as the National Advisory Committee for Aeronautics him to Earth before the end of the decade. Apollo (NACA) Langley Memorial Aeronautical Labora- was to be a massive undertaking –– the nation’s tory, was the first U.S.
    [Show full text]
  • NASA TV Schedule for Web (Week of 3-1-2021).Xlsx
    NASA TV Daily Program Schedule Monday - 3/1/2021 Eastern Standard Time 12 a.m. Planet Mars: 1979 12 a.m. 12:30 a.m. NASA X 12:30 a.m. 1 a.m. STS-109 Mission Highlights 1 a.m. 1:30 a.m. 1:30 a.m. NASA’s Incredible Discovery Machine: The Story of the Hubble Space Telescope 2 a.m. 2 a.m. 2:30 a.m. NASA Explorers 2:30 a.m. 3 a.m. NASA EDGE@ Home with SPLICE 3 a.m. 3:30 a.m. ISS Benefits for Humanity 3:30 a.m. 4 a.m. Planet Mars: 1979 4 a.m. 4:30 a.m. NASA X 4:30 a.m. 5 a.m. STS-109 Mission Highlights 5 a.m. 5:30 a.m. 5:30 a.m. NASA’s Incredible Discovery Machine: The Story of the Hubble Space Telescope 6 a.m. 6 a.m. 6:30 a.m. NASA Explorers 6:30 a.m. 7 a.m. NASA EDGE@ Home with SPLICE 7 a.m. 7:30 a.m. ISS Benefits for Humanity 7:30 a.m. 8 a.m. 8 a.m. Teaching Space With NASA - Introducing the Perseverance Mars Rover 8:30 a.m. 8:30 a.m. 9 a.m. NASA STEM Stars: Aerospace Engineer 9 a.m. 9:30 a.m. 9:30 a.m. 10 a.m. Planet Mars: 1979 10 a.m. 10:30 a.m. NASA X 10:30 a.m. 11 a.m. STS-109 Mission Highlights 11 a.m. 11:30 a.m.
    [Show full text]
  • NASA TV Daily Program Schedule Monday - 4/19/2021 Eastern Daylight Time 12 A.M
    NASA TV Daily Program Schedule Monday - 4/19/2021 Eastern Daylight Time 12 a.m. Nuclear Propulsion in Space 12 a.m. 12:30 a.m. Ocean Worlds: The Search for Life 12:30 a.m. 1 a.m. Orion Crew Module Cone Panel 1 a.m. 1:30 a.m. Tech On Deck 1:30 a.m. 2 a.m. 2 a.m. 2:30 a.m. Shuttle Documentary 2:30 a.m. 3 a.m. 3 a.m. 3:30 a.m. STS-100 Mission Highlights 3:30 a.m. 4 a.m. Nuclear Propulsion in Space 4 a.m. 4:30 a.m. Ocean Worlds: The Search for Life 4:30 a.m. 5 a.m. Orion Crew Module Cone Panel 5 a.m. 5:30 a.m. Orion Flight Test-1 5:30 a.m. 6 a.m. 6 a.m. 6:30 a.m. Coverage of the Ingenuity Mars helicopter’s first flight 6:30 a.m. 7 a.m. 7 a.m. 7:30 a.m. ISS Expedition 64 In-Flight Event for the Japan Aerospace Exploration Agency with JAXA 7:30 a.m. Flight Engineer Soichi Noguchi 8 a.m. 8 a.m. The von Karman Lecture Series - Venus: Earths Evil Twin or Just 8:30 a.m. 8:30 a.m. 9 a.m. How to Weigh an Exoplanet : Ask the Astronomers Live! 9 a.m. 9:30 a.m. 9:30 a.m. 10 a.m. Nuclear Propulsion in Space 10 a.m. 10:30 a.m. Ocean Worlds: The Search for Life 10:30 a.m.
    [Show full text]
  • Using Robotics NASA SUMMER of INNOVATION
    National Aeronautics and Space Administration Using Robotics NASA SUMMER OF INNOVATION LESSON THEME UNIT This lesson includes a series of activities Engineering - Robotics that are based on Robotics applications. GRADE LEVELS th th OBJECTIVES 7 - 9 Students will: • Simulate operating a planetary rover CONNECTION TO CURRICULUM Science and Technology and problem solve solutions • Work within a mission team setting to TEACHER PREPARATION TIME problem solve and accomplish a 20 min common goal. • Research examples of real world LESSON TIME NEEDED applications of robotics 3 hours Complexity: Moderate NATIONAL STANDARDS National Science Education Standards (NSTA) Science as Inquiry Understanding of scientific concepts An appreciation of ‘how we know’ what we know in science Understanding of the nature of science Skills necessary to become independent inquirers about the natural world The dispositions to use the skills, abilities, and attitudes associated with science Science and Technology Standards Abilities of technological design Understanding about science and technology Science in Personal and Social Perspectives Personal health Risks and benefits Science and technology in society History and Nature of Science Science as a human endeavor Nature of scientific knowledge Historical perspectives ISTE NETS and Performance Indicators for Students (ISTE) Creativity and Innovation Apply existing knowledge to generate new ideas, products, or processes Use models and simulations to explore complex systems and issues Identify trends
    [Show full text]