Cyclin E1 and Cyclin-Dependent Kinase 2 Are Critical for Initiation, but Not for Progression of Hepatocellular Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Cyclin E1 and Cyclin-Dependent Kinase 2 Are Critical for Initiation, but Not for Progression of Hepatocellular Carcinoma Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma Roland Sonntaga,1, Nives Giebelera,1, Yulia A. Nevzorovaa, Jörg-Martin Bangena, Dirk Fahrenkampb, Daniela Lambertza, Ute Haasa, Wei Hua, Nikolaus Gasslerc,2, Francisco Javier Cuberoa,3, Gerhard Müller-Newenb, Ali T. Abdallahd, Ralf Weiskirchene, Fabio Ticconif, Ivan G. Costaf, Mariano Barbacidg,4, Christian Trautweina, and Christian Liedtkea,4 aDepartment of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH), 52074 Aachen, Germany; bInstitute of Biochemistry and Molecular Biology, University Hospital RWTH, 52074 Aachen, Germany; cInstitute of Pathology, University Hospital RWTH, 52074 Aachen, Germany; dInterdisciplinary Center for Clinical Research, University Hospital RWTH, 52074 Aachen, Germany; eInstitute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH, 52074 Aachen, Germany; fInstitute for Computational Genomics, RWTH Aachen University, 52074 Aachen, Germany; and gMolecular Oncology, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain Contributed by Mariano Barbacid, August 3, 2018 (sent for review April 27, 2018; reviewed by Steven Dooley, Satdarshan Pal Singh Monga, and Luca Valenti) E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of liver regeneration following partial hepatectomy (PH), whereas cyclin-dependent kinase 2 (Cdk2) and thought to control the compound deletion of CcnE1 and CcnE2 substantially inhibited transition of quiescent cells into the cell cycle. Initial findings hepatocyte proliferation and liver mass restoration (3, 4). indicated that CcnE1 and CcnE2 have largely overlapping functions Hepatocellular carcinoma (HCC) is one of the most frequent for cancer development in several tumor entities including hepa- tumor diseases worldwide with growing incidence and poor tocellular carcinoma (HCC). In the present study, we dissected the prognosis. In most cases, HCC develops on the basis of chronic differential contributions of CcnE1, CcnE2, and Cdk2 for initiation hepatitis in a multistep process involving frequent up-regulation and progression of HCC in mice and patients. To this end, we or amplification of E-type cyclins and many other cell cycle- tested the HCC susceptibility in mice with constitutive deficiency related proteins as reviewed elsewhere (5). However, the detailed for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. contribution of the individual E-cyclins for HCC development has Genetic inactivation of CcnE1 largely prevented development of barely been investigated. We recently observed that inhibition of liver cancer in mice in two established HCC models, while ablation CcnE1 may attenuate HCC development in a genetic model of of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence Significance on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of The two E-type cyclins E1 and E2 are known to interact with CcnE2 and up-regulation of cell cycle and DNA repair pathways. Cdk2 and are thought to trigger cell cycle activity in carcino- Importantly, a similar expression profile was also found in HCC genesis. However, the individual contributions of cyclin E1, patients with elevated CcnE2 expression and poor survival. In cyclin E2, and Cdk2 for initiation and progression of hepato- general, overall survival in HCC patients was synergistically cellular carcinoma (HCC) are unknown. In the present study, we affected by expression of CcnE1 and CcnE2, but not through discovered that only cyclin E1—but not cyclin E2—is essential Cdk2. Our study suggests that HCC initiation specifically depends for initiation of liver cancer and requires Cdk2. Unexpectedly, on CcnE1 and Cdk2, while HCC progression requires expression of advanced liver cancer progression can be mediated in presence any E-cyclin, but no Cdk2. of any E-cyclin, but in a Cdk2-independent manner. We iden- tified the specific expression profiles of cyclin E1-dependent HCC | liver | cell cycle | diethylnitrosamine | DNA repair and cyclin E1-independent hepatoma cells. These signatures are useful for predicting patient prognosis and for developing he mammalian cell cycle is controlled by cyclin-dependent novel cyclin E-based HCC therapies. Tkinases (Cdk) and cyclins acting as Cdk-regulatory subunits. Author contributions: R.S., N. Giebeler, C.T., and C.L. designed research; R.S., N. Giebeler, Specific cyclin/Cdk complexes regulate transition through the Y.A.N., J.-M.B., D.L., U.H., W.H., and F.J.C. performed research; R.W. and M.B. contributed distinct phases of the cell cycle by phosphorylation of phase- new reagents/analytic tools; D.F., N. Gassler, G.M.-N., A.T.A., F.T., and I.G.C. analyzed data; specific substrates (1). Extracellular mitogenic signals induce and R.S. and C.L. wrote the paper. expression of D-type cyclins, which drive progression through G1 Reviewers: S.D., Heidelberg University; S.P.S.M., University of Pittsburgh; and L.V., Univer- phase via binding and activation of Cdk4 and Cdk6. These ki- sity of Milano. nases phosphorylate and inactivate the retinoblastoma protein The authors declare no conflict of interest. (Rb). Rb phosphorylation is completed by Cdk2 kinase in com- Published under the PNAS license. plex with E-type cyclins (CcnE1, CcnE2) shortly before S-phase Data deposition: The data reported in this paper have been deposited in the Gene Ex- entry, leading to the activation of E2F transcription factors pression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession no. GSE111079). and cell cycle-related genes. Despite their proposed important 1 function for S-phase entry, genetic knockout studies in mice R.S. and N. Giebeler contributed equally to this work. 2 revealed that CcnE1, CcnE2, or Cdk2 are not essential for Present address: Institute of Pathology, Klinikum Braunschweig, 38118 Braunschweig, Germany. 3 proliferation of normal tissue cells during development, ho- Present addresses: Department of Immunology, Complutense University School of Med- icine, 28040 Madrid, Spain; and Hospital 12 de Octubre Health Research Institute meostasis, and regeneration. Even compound inactivation of (imas12), 28040 Madrid, Spain. CcnE1 and CcnE2 in continuous growing murine embryonic fi- 4To whom correspondence may be addressed. Email: [email protected] or cliedtke@ broblasts allowed proper S-phase transition and proliferation but ukaachen.de. prevented at least cell cycle reentry after serum starvation and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. malignant transformation in vitro (2). We recently demonstrated 1073/pnas.1807155115/-/DCSupplemental. that deletion of a single E-cyclin had only a modest effect on Published online August 27, 2018. 9282–9287 | PNAS | September 11, 2018 | vol. 115 | no. 37 www.pnas.org/cgi/doi/10.1073/pnas.1807155115 Downloaded by guest on September 25, 2021 − − chronic hepatitis (6). Here, we aimed to genetically dissect the CcnE1 / mice displayed substantially reduced average tumor − − precise contribution of CcnE1, CcnE2, or Cdk2 for HCC initiation numbers and tumor size in comparison with WT or CcnE2 / mice and/or progression. We show that CcnE1 has a Cdk2-dependent, (Fig. 1E). Histologically, liver sections from DEN-treated WT and − − unique, and critical function for initiation of liver cancer, while CcnE2 / animals revealed strong dysplasia, abnormal tissue ar- − − HCC progression is controlled by alternative mechanisms in- chitecture, and excessive cell proliferation, whereas CcnE1 / liver dependent of Cdk2 activity. sections appeared mostly normal with infrequent small pre- cancerous lesions and infrequent occurrence of proliferating he- Results patocytes (SI Appendix, Fig. S2B). In DEN-treated WT mice, CcnE1—but Not CcnE2—Is Critical for DEN-Driven Hepatic Tumor CcnE1 was almost exclusively induced in hepatocytes within dys- Development. To assess the role of E-cyclins for hepatocarcino- plastic areas, but barely detectable (<0.1%) in nonparenchymal − − − − + + genesis, 2-wk-old WT, CcnE1 / , and CcnE2 / mice were cells such as CD45 leukocytes or α-SMA myofibroblasts (SI − − treated with a single dose of the hepatocarcinogen diethylni- Appendix,Fig.S3A). HCC formation in WT and CcnE2 / mice trosamine (DEN) and euthanized 22 wk or 38 wk later (SI Ap- was associated with up-regulation of CcnE1, but WT HCC did not pendix, Fig. S1A). Similar expression levels of Cytochrome P450 show elevated CcnE2 expression (SI Appendix,Fig.S3B). On the − − 2E1 (Cyp2E1) in all groups before and after treatment excluded cellular level, the few HCC nodules found in CcnE1 / livers were an effect of E-cyclin ablation on DEN metabolism and its bio- characterized by small clusters of CcnE2-expressing cells at the activation (SI Appendix, Fig. S1B). Twenty-two weeks after DEN edge of dysplastic lesions (SI Appendix, Fig. S3C). CcnE2 protein treatment, alanine transaminase (ALT) activities—an indicator was predominantly localized in the cytoplasm and only occasion- of overall liver injury—and relative liver weights in all mice were ally detected in the nucleus. Importantly, we did not detect CcnE2 at normal levels (SI Appendix, Fig. S1 C and D). However, small protein in livers
Recommended publications
  • Original Article Expression of Cell-Cycle Regulators Is Associated with Invasive Behavior and Poor Prognosis in Prolactinomas
    Int J Clin Exp Pathol 2016;9(3):3245-3255 www.ijcep.com /ISSN:1936-2625/IJCEP0021009 Original Article Expression of cell-cycle regulators is associated with invasive behavior and poor prognosis in prolactinomas Chunhui Liu1,2*, Weiyan Xie1,2*, Dan Wu3, Zhenye Li2, Chuzhong Li1,2, Yazhuo Zhang1,2 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; 2Beijing Tiantan Hospital, Capital Medical University, Beijing, China; 3Department of Neurology, Beijing Renhe Hospital, Beijing, China. *Equal con- tributors. Received December 2, 2015; Accepted February 13, 2016; Epub March 1, 2016; Published March 15, 2016 Abstract: Prolactinomas are the most common pituitary tumors. The mechanisms of cell-cycle regulators underlying their invasive biological behavior and poor prognosis have not yet been fully clarified. We classified 48 human pro- lactinomas as invasive or non-invasive and determined cyclin D1, cyclin E1, p16, p27, Cdk2 and Cdk4 expression by immunohistochemistry analysis of tissue microarray constructs. Then we determined the diagnostic and prognostic value of the cell-cycle regulators expression in human prolactinomas. In this proof of principle study we found that nuclear p16 and p27 expression levels were much lower in invasive prolactinomas compared with non-invasive prolactinomas. Meanwhile, significantly higher cyclin D1 and cyclin E1 expression in invasive prolactinomas com- pared with normal pituitary or non-invasive prolactinomas. No difference was found in Cdk2 or Cdk4 protein levels in invasive or non-invasive prolactinomas. Regarding clinical outcome, the expression ratios of cyclin D1/p16 and cyclin E1/p27 were significantly positively correlated with clinically inferior outcome (P<0.001), while Cdk2 or Cdk4 expression showed no relationship with clinical outcome.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/26/2021 02:04:00PM Via Free Access
    26 1 Endocrine-Related N Portman et al. CDK4/6 inhibitor resistance in 26:1 R15–R30 Cancer breast cancer REVIEW Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer Neil Portman1,2, Sarah Alexandrou1,2, Emma Carson1,2, Shudong Wang3, Elgene Lim1,2 and C Elizabeth Caldon1,2 1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia 2St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia 3Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia Correspondence should be addressed to C E Caldon: [email protected] Abstract Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination Key Words with endocrine therapy, and they significantly increase the progression-free survival of f CDK4/6 inhibitors patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line f estrogen receptor treatment setting. As the new standard of care in some countries, there is the clinical f breast cancer emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine f endocrine therapy therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance.
    [Show full text]
  • CDK1/Cyclin A2, Active (C0244)
    CDK1/Cyclin A2, active, GST-tagged, human PRECISIOÒ Kinase recombinant, expressed in Sf9 cells Catalog Number C0244 Storage Temperature –70 °C Synonyms: Figure 1. CDK1: CDC2, CDC28A, DKFZp686L20222, SDS-PAGE Gel of Typical Lot: MGC111195 ³70% (SDS-PAGE, densitometry) Cyclin A2: CCN1, CCNA 170 130 Product Description 95 Cyclin A2 CDK1 or Cell Division Control protein 1 is essential for 72 the completion of START, the controlling event in the 56 CDK1 cell cycle that is required to initiate mitosis. CDK1 is a 43 catalytic subunit of a protein kinase complex, called the M-Phase Promoting Factor that induces entry into 34 mitosis and is universal among eukaryotes.1 Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves Figure 2. a CDK1-mediated signal and delays the onset of Specific Activity of Typical Lot: apoptosis. Therapeutic potential of the CDK inhibitor, 151–205 nmole/min/mg NU2058, in androgen-independent prostate cancer has also been demonstrated.2 520,000 This recombinant product was expressed by 390,000 baculovirus in Sf9 insect cells using an N-terminal cpm) GST-tag. The gene accession numbers are NM 001786 260,000 and NM 001237. It is supplied in 50 mM Tris-HCl, 130,000 pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM Activity ( EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% 0 glycerol. 0 40 80 120 160 Protein (ng) Molecular mass: CDK1 ~59 kDa Procedure Cyclin A2 ~78 kDa Preparation Instructions Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM Precautions and Disclaimer glycerol 2-phosphate, 25 mM MgCl2, 5 mM EGTA, and This product is for R&D use only, not for drug, 2 mM EDTA.
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]
  • TEAD4 Ensures Postimplantation Development by Promoting Trophoblast Self-Renewal: an Implication in Early Human Pregnancy Loss
    TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss Biswarup Sahaa,1,2, Avishek Gangulya,1, Pratik Homea,b, Bhaswati Bhattacharyaa, Soma Raya, Ananya Ghosha, M. A. Karim Rumia,b, Courtney Marshb,c, Valerie A. Frenchc, Sumedha Gunewardenad, and Soumen Paula,b,c,3 aDepartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; bInstitute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160; cDepartment of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160; and dDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 22, 2020 (received for review February 12, 2020) Early pregnancy loss affects ∼15% of all implantation-confirmed Studies in mutant mouse models showed that failure in pla- human conceptions. However, evolutionarily conserved molecular centation often leads to in utero embryonic death (6, 7). Therefore, mechanisms that regulate self-renewal of trophoblast progenitors impaired placentation due to defective development or function of and their association with early pregnancy loss are poorly under- trophoblast cell lineages is considered one of the major underlying stood. Here, we provide evidence that transcription factor TEAD4 causes of early pregnancy loss. Disruptions of trophoblast pro- ensures survival of postimplantation mouse and human embryos genitor differentiation and defective placentation have also been by controlling self-renewal and stemness of trophoblast progeni- implicated as probable causes of pregnancy-associated compli- tors within the placenta primordium.
    [Show full text]
  • Mir-15 and Mir-16 Are Direct Transcriptional Targets of E2F1 That Limit E2F-Induced Proliferation by Targeting Cyclin E
    Molecular Cancer Cell Cycle, Cell Death, and Senescence Research miR-15 and miR-16 Are Direct Transcriptional Targets of E2F1 that Limit E2F-Induced Proliferation by Targeting Cyclin E Matan Ofir, Dalia Hacohen, and Doron Ginsberg Abstract microRNAs (miR) are small noncoding RNA molecules that have recently emerged as critical regulators of gene expression and are often deregulated in cancer. In particular, miRs encoded by the miR-15a, miR-16-1 cluster seem to act as tumor suppressors. Here, we evidence that the miR-15a, miR-16-1 cluster and related miR-15b, miR-16-2 cluster comprise miRs regulated by E2F1, a pivotal transcription factor that can induce both proliferation and cell death. E2F1 is a critical downstream target of the tumor suppressor retinoblastoma (RB). The RB pathway is often inactivated in human tumors resulting in deregulated E2F activity. We show that expression levels of the 4 mature miRs, miR-15a, miR-16-1 and miR-15b, miR-16-2, as well as their precursor pri- miRNAs, are elevated upon activation of ectopic E2F1. Moreover, activation of endogenous E2Fs upregulates expression of these miRs and endogenous E2F1 binds their respective promoters. Importantly, we corroborate that miR-15a/b inhibits expression of cyclin E, the latter a key direct transcriptional target of E2F pivotal for the G1/S transition, raising the possibility that E2F1, miR-15, and cyclin E constitute a feed-forward loop that modulates E2F activity and cell-cycle progression. In support of this, ectopic expression of miR-15 inhibits the G1/S transition, and, conversely, inhibition of miR-15 expression enhances E2F1-induced upregulation of cyclin E1 levels.
    [Show full text]
  • Cyclin E2, a Novel Human G1 Cyclin and Activating Partner of CDK2 and CDK3, Is Induced by Viral Oncoproteins
    Oncogene (1998) 17, 2787 ± 2798 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins Maimoona Zariwala1, Jidong Liu2 and Yue Xiong*,1,2,3 1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280; 2Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599- 3280; 3Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA G1 cyclin E controls the initiation of DNA synthesis by complexes with CDK4 or CDK6 to prevent the CDKs activating CDK2, and abnormally high levels of cyclin E from binding with and becoming activated by D-type expression have frequently been observed in human cyclins. The main function of CDK inhibitors is cancers. We have isolated a novel human cyclin, cyclin believed to couple diversi®ed growth inhibitory signals E2, that contains signi®cant homology to cyclin E. to the cell cycle clock. Cyclin E2 speci®cally interacts with CDK inhibitors of The decision to enter the replicative DNA synthesis the CIP/KIP family and activates both CDK2 and (S) phase or arrest in G1 is linked to diverse cellular CDK3. The expression of cyclin E2 mRNA oscillates processes such as signal transduction, cell differentia- periodically throughout the cell cycle, peaking at the tion, senescence, and oncogenic transformation G1/S transition, and exhibits a pattern of tissue (Hunter and Pines, 1994).
    [Show full text]
  • Tumour Kinome Re-Wiring Governs Resistance to Palbociclib in Oestrogen Receptor Positive Breast Cancers, Highlighting New Therapeutic Modalities
    Oncogene (2020) 39:4781–4797 https://doi.org/10.1038/s41388-020-1284-6 ARTICLE Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities 1 1 1 1 1 Sunil Pancholi ● Ricardo Ribas ● Nikiana Simigdala ● Eugene Schuster ● Joanna Nikitorowicz-Buniak ● 2 3 1 4 5 6 Anna Ressa ● Qiong Gao ● Mariana Ferreira Leal ● Amandeep Bhamra ● Allan Thornhill ● Ludivine Morisset ● 6 6 2 2 7 Elodie Montaudon ● Laura Sourd ● Martin Fitzpatrick ● Maarten Altelaar ● Stephen R. Johnston ● 6 1,8 1 Elisabetta Marangoni ● Mitch Dowsett ● Lesley-Ann Martin Received: 24 May 2019 / Revised: 18 March 2020 / Accepted: 24 March 2020 / Published online: 19 April 2020 © The Author(s) 2020. This article is published with open access Abstract Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)- positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene- copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary 1234567890();,: 1234567890();,: resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB- signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7.
    [Show full text]
  • Correction1 4784..4785
    Correction Correction: PCI-24781 Induces Caspase and Reactive Oxygen Species-Dependent Apoptosis In the article on PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis published in the May 15, 2009 issue of Clinical Cancer Research, there was an error in Table 1. Down-regulated genes were incorrectly labeled as up-regulated genes. The correct table appears here. Bhalla S, Balasubramanian S, David K, et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-nB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 2009;15:3354–65. Table 1. Selected genes from expression analysis following 24-h treatment with PCI-24781, bortezomib, or the combination (in Ramos cells) Accn # Down-regulated genes 0.25 Mmol/L PCI/3 nmol/L Bor Name PCI-24781 Bortezomib Combination* Cell cycle-related NM_000075 Cyclin-dependent kinase 4 (CDK4) 0.49 0.83 0.37 NM_001237 Cyclin A2 (CCNA2) 0.43 0.87 0.37 NM_001950 E2F transcription factor 4, p107/p130-binding (E2F4) 0.48 0.79 0.40 NM_001951 E2F transcription factor 5, p130-binding (E2F5) 0.46 0.98 0.43 NM_003903 CDC16 cell division cycle 16 homolog (S cerevisiae) (CDC16) 0.61 0.78 0.43 NM_031966 Cyclin B1 (CCNB1) 0.55 0.90 0.43 NM_001760 Cyclin D3 (CCND3) 0.48 1.02 0.46 NM_001255 CDC20 cell division cycle 20 homolog (S cerevisiae; CDC20) 0.61 0.82 0.46 NM_001262 Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4; CDKN2C) 0.61 1.15 0.56 NM_001238 Cyclin E1 (CCNE1) 0.56 1.05 0.60 NM_001239 Cyclin H (CCNH) 0.74 0.90 0.64 NM_004701
    [Show full text]
  • Cyclin-Dependent Kinases and CDK Inhibitors in Virus-Associated Cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo*
    Tavakolian et al. Infectious Agents and Cancer (2020) 15:27 https://doi.org/10.1186/s13027-020-00295-7 REVIEW Open Access Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo* Abstract The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host’scells.By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins. Keywords: CDK, CIKs, Cancer, Virus Introduction the key role of the phosphorylation in the entrance of Cell division is controlled by various elements [1–10], the cells to the S phase of the cell cycle [19]. especially serine/ threonine protein kinase complexes, CDK genes are classified in mammalian cells into differ- called cyclin-dependent kinases (CDKs), and cyclins, ent classes of CDKs, especially some important regulatory whose expression is prominently regulated by the bind- ones (The regulatory CDKs play important roles in medi- ing to CDK inhibitors [11, 12]. In all eukaryotic species, ating cell cycle). Each of these CDKs could interact with a these genes are classified into different families. It is specific cyclin and thereby regulating the expression of well-established that the complexes of cyclin and CDK different genes [20, 21].
    [Show full text]
  • Reduction of Cdc25a Contributes to Cyclin E1-Cdk2 Inhibition at Senescence in Human Mammary Epithelial Cells
    Oncogene (2000) 19, 5314 ± 5323 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells Charanjit Sandhu1, Jerey Donovan1, Nandita Bhattacharya1, Martha Stampfer2, Peter Worland3 and Joyce Slingerland*,1 1Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada; 2Life Sciences Division, Lawrence Berkeley Laboratory, University of California Berkeley, Berkeley, California, CA 94720, USA; 3Mitotix Incorporated, Cambridge, Massachusetts, MA 02139, USA Replicative senescence may be an important tumor a phenomenon known as cellular senescence (Hay¯ick, suppressive mechanism for human cells. We investigated 1965). Senescence may function as a tumor suppression the mechanism of cell cycle arrest at senescence in mechanism since the proliferative constraint imposed human mammary epithelial cells (HMECs) that have by senescence limits the accumulation of genetic errors undergone a period of `self-selection', and as a in the progeny of a single cell (Vojta and Barrett, consequence exhibit diminished p16INK4A levels. As 1995). The progressive reduction in telomere length HMECs approached senescence, the proportion of cells that occurs with successive cell divisions may govern with a 2N DNA content increased and that in S phase the point at which cells enter replicative senescence decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 (Bodnar et al., 1998; de Lange, 1998). Cultured human and cyclin A-cdk2 activities were not abruptly inhibited, ®broblasts show a predominantly 2N DNA content at but rather diminished steadily with increasing population senescence, re¯ecting cell cycle arrest in G1 phase age.
    [Show full text]
  • A Time and a Place for Cyclin A2 and Cyclin B1 in the Human Cell Cycle
    From the Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden CYCLINS ON THE MOVE: A TIME AND A PLACE FOR CYCLIN A2 AND CYCLIN B1 IN THE HUMAN CELL CYCLE Helena Silva Cascales Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by AJ E-print AB © Helena Silva Cascales, 2016 ISBN 978-91-7676-335-3 Cyclins on the move: A time and a place for Cyclin A2 and Cyclin B1 in the human cell cycle THESIS FOR DOCTORAL DEGREE (Ph.D.) By Helena Silva Cascales Principal Supervisor: Opponent: Assist. Prof. Arne Lindqvist Dr Helfrid Hochegger Karolinska Institutet University of Sussex Department of Cell and Molecular Biology School of Life Sciences Co-supervisor(s): Examination Board: Dr Ana Teixeira Prof. Andrzej Wojcik Karolinska Institutet Stockholm University Department of Medical Biochemistry and Department of Molecular Biosciences Biophysics Division of Biomaterials and Regenerative Assoc. Prof. Teresa Frisan Medicine Karolinska Institutet Department of Cell and Molecular Biology Prof. Christer Höög Karolinska Institutet Assist. Prof. Victoria Menendez Benito Department of Cell and Molecular Biology Karolinska Institutet Department of Biosciences and Nutrition To Daniel Man kann alles essen aber nicht alles wissen ABSTRACT The ultimate aim of the cell cycle is to create an identical daughter cell. Therefore, correct progression through the different phases of the cell cycle is crucial to ensure faithful cell division. Successful execution of the different processes in the cell cycle is achieved by the coordinated action of a complex network of protein kinases and phosphatases at the centre of which stand Cyclin-Cdk complexes.
    [Show full text]