Antimicrobial Activity and Identification of Fungus Associated Stylissa Flabelliformis Sponge Collected from Menjangan Island West Bali National Park, Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Activity and Identification of Fungus Associated Stylissa Flabelliformis Sponge Collected from Menjangan Island West Bali National Park, Indonesia Indonesian J. Pharm. Vol. 29 No. 2 : 66 – 73 ISSN-p : 2338-9427 DOI: 10.14499/indonesianjpharm29iss2pp66 Research Article Antimicrobial activity and Identification of fungus associated Stylissa flabelliformis sponge collected from Menjangan Island West Bali National Park, Indonesia Erna Prawita Setyowati1*, Sylvia Utami Tunjung Pratiwi1, Purwantiningsih1, Putu Oka Samirana2 1Faculty of Pharmacy, ABSTRACT Universitas Gadjah Mada The Fungus is a very important microorganism as a producer (UGM). Jl. Sekip Utara of bioactive secondary metabolites. Active substances of microbial 55281, Yogyakarta, origin have been sought through the process of screening methods Indonesia to obtain antimicrobial compounds. The purpose of this study was 2 Dept of Pharmacy, Faculty to isolate fungi associated with sponge taken from Menjangan of Math and Natural Island National Park West Bali (Indonesia) and identify fungi that Sciences, Udayana have antimicrobial activity. Isolation of fungus from sponge was University, Bali, Indonesia carried out by spread plate method using Saboroud Saline Agar medium. Each fungi will be tested to Staphylococcus aureus ATCC Submitted: 08-02-2018 29213, Escherichia coli ATCC 25922 and Candida albicans ATCC Revised: 10231. Identification of fungi is based on the observation of Accepted: macroscopic, microscopic and also using 16rRNA/ITS phylogeny tree. The results showed that S. flabelliformis sponge had 10 *Corresponding author fungal isolates. Most of them have antimicrobial activity. The name Erna Prawita Setyowati associated with a sponge fungus is These 10 fungus are Email: Aspergillus flavus strain UPMZ02, Aspergillus fumigatus strain [email protected] CD1621, Trichoderma reesei strain JCM 2267, Aspergillus nomius strain KUB105, Aspergillus sp. strain TLWK-09, Aspergillus flavus strain MC-10-L, Penicillium sp. strain RMA-2, Aspergillus sp. strain TLWK-09, Aspergillus fumigatus and Trichoderma reesei strain TV221 Keyword: Sponge-associated fungi, Stylissa flabelliformis, Staphylococcus aureus, Escherichia coli, Candida albicans INTRODUCTION Marine sponges often contain diverse Sponges are the subject of interesting and abundant microbial communities, including antibiotic development studies because the bacteria, archaea, microalgae, and fungi. In sponges form associations with various some cases, these microbial associates comprise microbes and are rich in bioactive compounds. as much as 40% of the sponge volume and can Sponges are the largest source of new bioactive contribute significantly to host metabolism compounds than other marine products (Taylor, et al., 2007). Correspondingly, the (Mehbub, et al., 2014). Bioactive compounds studies of natural products from sponge- obtained from sponges are known to have associated microorganisms, particularly bacteria various activities such as cytotoxic, and fungi, are also plenty. Secondary antimicrobial, anti-inflammatory, antiparasite metabolites produced by fungi associated with and others (Proksch, et al., 2002; Setyowati et al, sponges are much larger when compared with 2016). The bioactive compound on the sponge secondary metabolites produced by bacteria acts as a self-protection mechanism against the that associate with sponges. In more detail, environment. It was surprising to find that Ascomycota dominates the proportion of many secondary metabolites reported from fungal producer by division (Kim, et al., 2013). marine invertebrate are produced by their The main focus on secondary metabolites microorganism symbionts (Thakur and Muller, produced by fungi is due to their diverse 2004). biological activities having both toxic and 66 Volume 29 Issue 2 (2018) Erna Prawita Setyowati curative effects in maintaining human and chloramphenicol, and cultivated at 25°C. veterinary health. More intense studies on Emerging fungal mycelia were isolated and marine fungi have been done in the past three taken into the culture. decades. These continuous studies revealed that marine fungi are rich sources of bioactive Antimicrobial activity of fungi natural products (Ebada and Prosch, 2010; Bills The concentration of microbes used was and Gloer, 2016). 107 Colony Forming Unit. The microbial Previous study conducted by Setyowati et suspension was inoculated into 10mL nutrient- al. (2004) showed that Stylissa flabelliformis agar medium (E. coli, S. aureus) and Saboroud sponge taken from Menjangan Island's waters Dextrose Agar (C. albicans), then poured into a of the West Bali National Park could produce petri dish. jaspamide compounds. This compound is Sterilized disc paper, sprayed as much as highly potent against C. albicans and more active 10μL of fungi methanol extract dissolved than Miconazole nitrate as a comparison, this with a concentration of 10 mg/mL. As a compound also has cytotoxic power equivalent positive control, 1mg/mL of tetracycline was to vincristine (leukemia cancer drug) in used for antibacterial test and used 1mg/mL of myeloma cells. This compound is usually found griseofulvin for an antifungal test, and from the genus Jaspis sp and has never been methanol as a solvent control. Paper found from the species S. flabelliformis. Often discs were placed on top of pre-prepared metabolites with compound structures similar solid media. Petri was incubated overnight at to those produced from sponges with different 35ºC-37°C. Observed zone barriers formed taxonomies (Mehbub et al., 2014). This suggests around the paper disc (Niyomkam, et al., 2010). that the structural characteristics of a compound are strongly thought to originate Identification of fungi Identification of fungi associated from sponge microorganisms and are sponge was carried out by observing responsible for the production of various fungi macroscopically, microscopically, and bioactive compounds (Koopmans, et al., 2009). molecularly based on the genetic analysis of Therefore it is estimated that some sponge partial locus Internal Transcribed Spacer (ITS) metabolites are produced by symbiotic ribosomal DNA fungi. microorganisms (Thomas, et al., 2010). DNA isolation was initiated by growing Antimicrobial assay against fungi associated fungal isolates in Potato Dextrose Broth liquid with S. flabelliformis sponge and molecular medium (PDB) and incubated for 72h. The identification of the sponge fungus was biomass of the fungal mycelia is further performed in this study. harvested for the DNA extraction process. MATERIAL AND METHODS DNA fungi extraction was performed using Sampling and Isolation of the fungal PHYTOpure nucleon reagents (Amersham association sponge. LIFE Science). PCR Amplification on ITS Specimens of the marine sponge S. using primer ITS4. Purification of PCR product flabelliformis (Axenellida) were collected from was performed by PEG precipitation method Menjangan Island National Park West Bali and continued with cycle sequencing. The (Indonesia) through Scuba diving. Since the results of the sequencing cycle are reversed stringent surface sterilization procedures have with ethanol purification method. Analysis of previously proven to be too rigorous for sequence sequencing of nitrogen-based using delicate sponge tissues, the sponges were either an automated DNA sequencer (ABI PRISM briefly sterilized for 30s in 70% v/v ethanol 3130 Genetic analyzer) (Applied Biosystems). followed by three subsequent washing in sterile The sequenced raw data was then streamed and commercial sea water or merely washed three dissembled using the Bioedit program. times in sterile seawater. The sponge tissue was Sequencing data was already assembled at then cut into approximately 1.5mm segments BLAST with genome data registered at and planted on Sabouroud agar growth DDBJ/DNA Data Bank of Japan or medium with sea water, 250ug/mL NCBI/National Centre for Biotechnology Volume 29 Issue 2 (2018) 67 Antimicrobial activity and Identification of fungus Figure 1. Stylissa flabelliformis sponge. Figure 2. Isolate of fungus from Stylissa flabelliformis Information to determine which taxon/species The antimicrobial activity of fungi against has the greatest homology/similarity and is several bacteria showed that most of the collected molecularly related (Atashpaza, et al., 2010; fungi were possible to inhibit the growth of Santosa, 2011). microorganisms tested. Fungi No. 3, 5, 6, 7, 9 and 10 were inhibiting S. aureus, C. albicans and RESULTS AND DISCUSSION E. coli. The fungus has broad-spectrum S. flabelliformis sponges (Figure 1) are red properties because it can inhibit the growth of with a thin shape and soft, porous surface with almost all tested bacteria and yeast in vitro. irregular protrusions on the whole body, inside Table I also shows that 7 of the 10 fungi yellowish-white body. Sponge classification is can inhibit Staphylococcus aureus. It is known that as follows: Kingdom Animalia, Division S. aureus causing various infections, such as Porifera, Class Demospongiae, Subclass acne, ulcers, pneumonia, endocarditis, and Ceractinomorpha, Order Halicondrida, Family implantation of any part of the body (Jawetz et Axenellida, Genus Stylissa, Species S. al., 1996). The prevalent treatment to deal with flabelliformis (Hooper and Soest, 2002). bacterial infections is to use antibiotics such as The screening was done to obtain the methicillin, amoxicillin, penicillin, oxacillin, and active microbial (fungi) potential. Isolation of others. Nonetheless, what seems to be fungus from S. flabelliformis sponge observed at happening is the occurrence of S. aureus least 10 fungi as (Figure 2). All of the 10 fungi
Recommended publications
  • Bioactive Compounds from the Marine Sponge Geodia Barretti
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 32 Bioactive Compounds from the Marine Sponge Geodia barretti Characterization, Antifouling Activity and Molecular Targets MARTIN SJÖGREN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6192 UPPSALA ISBN 91-554-6534-X 2006 urn:nbn:se:uu:diva-6797 !" #$ % & " ' & & (" " )* & (" +, !" - .-", ./0' , #$, & " . ' , " 1 2 & ' 2 ! ' , 2 , #, 3 , , 4.5 %676$768, !" ' ' & , !- & " - ' " " & & " , !" ) 69)$6 6:6 6 " +6 ' ;+ <=> :%6" ) 69$6 6 " +6 ' ;+ - ' ' ? ,!" & " " ' & & ' < & ,% @ ) + 3,% @ ):%6" +, !" - & " " & " & ' , !" - & && 6 ', !" & " - , ,A )-=-+ - & & '" -B, !" " && & :%6" & " " ! ) / .-" & +, !" && - .( & -"" " & & - :%A - " ),A+ $A - " :%6" ),A+, * ! " & - :A - " ),A+ 3#A - " :%6" ),A+ - " " .( , * " 7 ' & 1 - " & " " , !- & " ' " && - " 1 && , . & " ' ' & " - " " " ' 1 9'; 1 )< ,7 @ +, !" && & 1 9'; 1 - " - , * ' & " & - & 6C! , & && 6C!#2 6C!# 6C!7 -" :%6" - " 6C!# & " )6C!66C!3+, "# $ Geodia barretti , s y m ' i " Balanus improvius a ' 56C! ! %& ' ! ' ( )*+' ' ,-*)./0 ' # E ./0' #$ 4..5 $6$%# 4.5 %676$768
    [Show full text]
  • De Novo Assembly and Genome Analyses of the Marine-Derived
    De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, J. Philipp Benz, Jens Laurids Sorensen, Eric Record, Stefanie Poeggeler, Frank Kempken To cite this version: Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, et al.. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster. PLoS ONE, Public Library of Science, 2015, 10 (10), 10.1371/journal.pone.0140398. hal-01439026 HAL Id: hal-01439026 https://hal.archives-ouvertes.fr/hal-01439026 Submitted on 17 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain
    [Show full text]
  • Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria Lessoni
    Mar. Drugs 2014, 12, 4439-4473; doi:10.3390/md12084439 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria lessoni Yadollah Bahrami 1,2,3,4,*, Wei Zhang 1,2,3, Tim Chataway 5 and Chris Franco 1,2,3,* 1 Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] 2 Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia 3 Australian Seafood Cooperative Research Centre, Mark Oliphant Building, Science Park, Adelaide SA 5042, Australia 4 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran 5 Flinders Proteomics Facility, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.B.); [email protected] (C.F.); Tel.: +61-872-218-563 (Y.B.); Fax: +61-872-218-555 (Y.B. & C.F.); Tel.: +61-872-218-554 (C.F.). Received: 5 June 2014; in revised form: 25 July 2014 / Accepted: 25 July 2014 / Published: 8 August 2014 Abstract: Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(9), 610-614
    ISSN: 2320-5407 Int. J. Adv. Res. 5(9), 610-614 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/5367 DOI URL: http://dx.doi.org/10.21474/IJAR01/5367 RESEARCH ARTICLE MARINE BACTERIA AND FUNGI AS SOURCES FOR BIOACTIVE COMPOUNDS: PRESENT STATUS AND FUTURE TRENDS. Varuni K Gunathilake. Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Marine organisms undergo a vast range of chemical and physical conditions in the marine environment, thus a high diversity is reported Received: 09 July 2017 in the bioactive compounds they produce. With the development of Final Accepted: 11 August 2017 marine biotechnology, a considerable number of researches are focused Published: September 2017 on marine bacteria and fungi-derived bioactive compounds. As a result, Key words:- marine bacteria and fungi are ranked on the top of the hierarchy of all marine bacteria, marine fungi, bioactive organisms, as they are responsible for producing a wide range of compounds, marine pharmacognosy. bioactive secondary metabolites with potential pharmaceutical applications. Thus, they have the potential to provide future drugs against important diseases, such as cancer, a range of viral diseases, malaria, and inflammations. This review aims at describing some of the most highly cited reviews of the last decade on marine bacteria and fungi -derived bioactive compounds and the most promising substances extracted and isolated from these for pharmaceutical applications. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Bacteria and fungi have a major impact on the development of medical science since the discovery that they not only are the cause of infection but also produce organic compounds that can both cure infections and help treat a variety of non infectious diseases.
    [Show full text]
  • Immunomodulatory Activity of the Marine Sponge, Haliclona (Soestella) Sp
    Hindawi Journal of Immunology Research Volume 2020, Article ID 7281295, 11 pages https://doi.org/10.1155/2020/7281295 Research Article Immunomodulatory Activity of the Marine Sponge, Haliclona (Soestella) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar Albino Rats: Immunosuppression and Th1-Skewed Cytokine Response Varuni Gunathilake,1 Marco Bertolino,2 Giorgio Bavestrello,2 and Preethi Udagama 1 1Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka 2Dipartimento di Scienze della Terra, Dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy Correspondence should be addressed to Preethi Udagama; [email protected] Received 10 April 2020; Revised 10 July 2020; Accepted 16 July 2020; Published 16 November 2020 Guest Editor: Tomasz Baczek Copyright © 2020 Varuni Gunathilake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Natural secondary metabolites of sponges of the genus Haliclona are associated with an array of biological activity with therapeutic usage. We investigated the immunopharmacological properties of a presumably novel marine sponge species from Sri Lanka, Haliclona (Soestella) sp. Sponge material was collected from southern Sri Lanka by scuba diving. Sponge identification was based on spicule and skeleton morphology using light microscopy.
    [Show full text]
  • Copyright by Aimee Elizabeth Talarski 2014
    Copyright by Aimee Elizabeth Talarski 2014 The Dissertation Committee for Aimee Elizabeth Talarski certifies that this is the approved version of the following dissertation: Genetic basis for ichthyotoxicity and osmoregulation in the euryhaline haptophyte, Prymnesium parvum N. Carter Committee: ____________________________________ John W. La Claire, II, Supervisor ____________________________________ Deana Erdner ____________________________________ Stanley Roux ____________________________________ David Herrin ____________________________________ Robert Jansen Genetic basis for ichthyotoxicity and osmoregulation in the euryhaline haptophyte, Prymnesium parvum N. Carter by Aimee Elizabeth Talarski, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2014 Dedication This dissertation is dedicated in loving memory of my son, Bobby Talarski Hamza. Acknowledgements I would like to express my heartfelt gratitude to my advisor, Dr. John W. La Claire, II, for giving me the opportunity to work in his laboratory, encouraging me to further my education, and motivating me to become a better scientist. I cannot thank Dr. Schonna Manning enough, who has not only become a good friend over the years but has contributed a lot to the quality of my graduate education at the University of Texas. She is an amazing, patient, and innovative scientist who constantly inspires me. Additionally, I would like to express appreciation to my committee (Dr. Deana Erdner, Dr. Stan Roux, Dr. Bob Jansen, and Dr. David Herrin) for their time, support, and valuable advice. Further thanks is extended to my family for their love and support and believing in me all of these years, particularly my mother, who instilled the importance of education within me from an early age; my cherished friend Dr.
    [Show full text]
  • Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini
    Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini To cite this version: Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini. Fundamentals and Applica- tions of Chitosan. Sustainable Agriculture Reviews 35. Chitin and Chitosan: History, Fundamentals and Innovations, 35, Springer International Publishing AG, pp.338, 2019, Sustainable Agriculture Reviews, 978-3-030-16538-3; 978-3-030-16537-6. 10.1007/978-3-030-16538-3_2. hal-02152878 HAL Id: hal-02152878 https://hal.archives-ouvertes.fr/hal-02152878 Submitted on 11 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, and Grégorio Crini Abstract Chitosan is a biopolymer obtained from chitin, one of the most abundant and renewable material on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods, such as crustaceans, e.g. crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget.
    [Show full text]
  • Antioxidant and Antimicrobial Potential of the Bifurcaria Bifurcata Epiphytic Bacteria
    Mar. Drugs 2014, 12, 1676-1689; doi:10.3390/md12031676 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria André Horta 1,†, Susete Pinteus 1,†, Celso Alves 1, Nádia Fino 1, Joana Silva 1, Sara Fernandez 2, Américo Rodrigues 1,3 and Rui Pedrosa 1,4,* 1 Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal; E-Mails: [email protected] (A.H.); [email protected] (S.P.); [email protected] (C.A.); [email protected] (N.F.); [email protected] (J.S.); [email protected] (A.R.) 2 Higher School of Agricultural Engineering (ETSEA), University of Lleida, E-25003 Lleida, Spain; E-Mail: [email protected] 3 Gulbenkian Institute of Science, 2780-156 Oeira, Portugal 4 Center of Pharmacology and Chemical Biopathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +35-1-262-783-325; Fax: +35-1-262-783-088. Received: 31 December 2013; in revised form: 14 January 2014 / Accepted: 4 March 2014 / Published: 24 March 2014 Abstract: Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 10, Issue, 04, pp.68349-68353, April, 2018 ISSN: 0975-833X RESEARCH ARTICLE EVALUATION OF IN VITRO ANTI-INFLAMMATORY ACTIVITY OF FIVE SELECTED MARINE SPONGES AGAINST DENATURATION OF PROTEIN-A PILOT STUDY 1Silva, D. P. M., 2Bertollino, M. and 1Gunathilake, K. V. K. 1Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka 2Department of Earth, Environment and Life, University of Genoa, Corso Europa26, 16132 – Genova, Italy ARTICLE INFO ABSTRACT Article History: Background: Marine sponges are well renowned for producing bioactive secondary metabolites with Received 15th January, 2018 drug leads. Screening of anti-inflammatory compounds from marine sponges is highly appreciated in Received in revised form the field of marine pharmacognosy due to their effectiveness and specificity over the most of 14th February, 2018 synthetic non-steroidal anti-inflammatory drugs. In vitro models to test anti-inflammatory activity are Accepted 08th March, 2018 considered obligatory prior to pre-clinical studies. Published online 30th April, 2018 Objective: To evaluate in vitro anti-inflammatory effect of crude extracts of five marine sponge samples (N=5), collected from Dehiwala, Colombo, Sri Lanka. Key words: Methodology: Identification of sponge species were based on morphology, spicule and skeleton Sri Lankan Marine Sponges, analysis, using light microscopy. Each sponge crude extract (SCE) was tested for selected zoo- Anti-Inflammatory Activity, chemicals and against the denaturation of albumin to assess the anti-inflammatory activity. Zoo Chemical Analysis. Diclofenac sodium was used as the reference drug.
    [Show full text]
  • Pharmacognosy
    ParasiterDiscovery orsakar förödande ofsjukdomarBioactive Molecules Vi delar vår planet inte bara med andrain större Nature djur, utan också med en uppsjö olika mikroorganismer och en del av dessa är skadliga eller till och med dödliga för oss människor. Det finns en rad olika parasiter som orsakar sjukdomar. En medicinskt viktig grupp är parasitiska maskar (helminter), som beräknas infektera en tredjedel av världens befolkning, särskilt i Afrika söder om Sahara, södra Asien samt i Mellan- och SydamerikaLars Bohlin (Figur 1). Flodblindhet och lymfatisk filariasis är två sjukdomar som orsakas av parasitiska Professormaskar. Som namnetemeritus antyder leder flodblindhet till blindhet, till följd av en kronisk inflammation i hornhinnan. Lymfatisk filariasis drabbar mer än 100 miljoner människor och orsakarPharmacognosy kronisk svullnad , samtDepartment livslång funktionsnedsättningof Pharmaceutical och stigmatisering, bland annat i form av elefantiasis (lymfödem)Bioscience samt ödem, Uppsala i skrotum. University Malaria har utgjort en farsot under hela mänsklighetens historia. Sjukdomen sprids via myggor och orsakas av encelliga parasiter, som infekterar de röda blodcellerna. Infektionen ger upphov till feberattacker och i svåra fall organskador som kan ha dödlig utgång. Mer än 3,4 miljarder människor, framför allt i fattiga områden, löper risk att bli smittade av malaria och sjukdomen skördar varje år fler än 450 000 liv, framför allt bland barn. Från bakterier och växter Föreläsningtill nya behandlingar Apotekarkurs mot parasiter 201204 Efter årtionden av mycket begränsade framsteg i utvecklingen av behandlingar mot parasitsjukdomar har de upptäckter som gjorts av årets Nobelpristagare radikalt förbättrat denna situation. Satoshi Ōmura, en japansk mikrobiolog och expert på att isolera naturprodukter, hade siktet inställt på en särskild sorts bakterier, Streptomyces, som lever i jorden och som man visste producerade en rad ämnen med antibakteriell aktivitet (tex Streptomycin, som upptäcktes av Selman Waksman, belönat med Nobelpriset 1952).
    [Show full text]
  • Pt. Ravishankar Shukla University, RAIPUR (C.G.) 492 010 B. Pharm
    Pt. Ravishankar Shukla University, RAIPUR (C.G.) 492 010 B. Pharm. (A Four Year Degree Programme) Semester System ORDINANCE & SYLLABUS UNIVERSITY INSTITUTE OF PHARMACY FACULTY OF TECHNOLOGY PT. RAVISHANKAR SHUKLA UNIVERSITY, RAIPUR (C.G.) 1 Approved in meeting of Board of Studies in Faculty of Technology, Subject: Pharmacy Dt. October 03, 2013 First Semester Examination for the Degree of Bachelor of Pharmacy SCHEME OF PAPERS Time Minimum Teaching Maximum Marks Allowed for Sr. No. Subject Marks for Hrs./Week Examination Passing Sessional Paper Total Hrs. 1-T-1 Introduction to Pharmaceutics 3 30 70 100 40 3 1-P-1 Introduction to Pharmaceutics 3 30 70 100 40 4 Pharmaceutical Chemistry 1-T-2 3 30 70 100 40 3 Physical Pharmaceutical Chemistry 1-P-2 3 30 70 100 40 4 Physical Pharmaceutical Chemistry 1-T-3 3 30 70 100 40 3 Inorganic Pharmaceutical Chemistry 1-P-3 3 30 70 100 40 4 Inorganic 1-T-4 Pharmaceutical Biology 3 30 70 100 40 3 1-P-4 Pharmaceutical Biology 3 30 70 100 40 4 1-T-5 Computer Application 3 30 70 100 40 3 1-P-5 Computer Application 3 30 70 100 40 4 Second Semester Examination for the Degree of Bachelor of Pharmacy SCHEME OF PAPERS Maximum Marks Time Allowed Minimum Teaching for Sr. No. Subject Marks for Hrs./Week Sessional Paper Total Examination Passing Hrs. Physical Pharmacy 3 30 70 100 40 3 2-T-1 2-P-1 Physical Pharmacy 3 30 70 100 40 4 2-T-2 Pharmaceutical 3 30 70 100 40 3 Engineering- I 2-T-3 Pharmaceutical 3 30 70 100 40 3 Engineering- II 2-P-3 Pharmaceutical 3 30 70 100 40 4 Engineering- II 2-T-4 Pharmaceutical 3 30 70 100 40 3 Jurisprudence 2-T-5 Human Anatomy and 3 30 70 100 40 3 Physiology-I 2-P-5 Human Anatomy and 3 30 70 100 40 4 Physiology-I 2 Approved in meeting of Board of Studies in Faculty of Technology, Subject: Pharmacy Dt.
    [Show full text]
  • Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations
    marine drugs Review Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations Yasin Genç 1, Hilal Bardakci 2, Çi˘gdemYücel 3, Gökçe ¸SekerKaratoprak 4, Esra Küpeli Akkol 5,* , Timur Hakan Barak 2 and Eduardo Sobarzo-Sánchez 6,7,* 1 Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey; [email protected] 2 Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; [email protected] (H.B.); [email protected] (T.H.B.) 3 Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey; [email protected] 4 Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey; [email protected] 5 Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey 6 Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile 7 Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain * Correspondence: [email protected] (E.K.A.); [email protected] (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.) Received: 27 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry.
    [Show full text]