Potential for Agricultural Biomass Production for Energy Purposes in Poland: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Potential for Agricultural Biomass Production for Energy Purposes in Poland: a Review A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Baum, Rafał; Wajszczuk, Karol; Pepliński, Benedykt; Wawrzynowicz, Jacek Article Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review Contemporary Economics Provided in Cooperation with: University of Finance and Management, Warsaw Suggested Citation: Baum, Rafał; Wajszczuk, Karol; Pepliński, Benedykt; Wawrzynowicz, Jacek (2013) : Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review, Contemporary Economics, ISSN 2084-0845, Vizja Press & IT, Warsaw, Vol. 7, Iss. 1, pp. 63-74, http://dx.doi.org/10.5709/ce.1897-9254.74 This Version is available at: http://hdl.handle.net/10419/105415 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu 63 Primary submission: 06.02.2012 | Final acceptance: 12.09.2012 Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review Rafał Baum1, Karol Wajszczuk1, Benedykt Pepliński1 & Jacek Wawrzynowicz1 ABSTRACT This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 in- cludes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020). Growth of demand for renewable energy will primarily result from strong growth of demand for transport biofuels and electricity. In 2020, approximately 80% of final energy from renewable sources will come from biomass. More than three-quarters of the biomass will be generated from agriculture. In Poland, crops from 1.0 to 4.3 million ha can be used for energy production. The study shows changes in the structure of biomass use, and the analysis confirms the declining share of biomass for heat production and the increasing share of biomass for electricity and biofuels. The main obstacles to the continued use of agricultural biomass are a lack of local markets for biomass energy and poor financial support for energy crop production. KEY WORDS: biomass, biomass production, agricultural biomass, energy crops, biofuels JEL Classification: Q16, Q41, Q42, Q47 1 Poznań University of Life Sciences, Poland Introduction reports of the Intergovernmental Panel on Climate The increasing importance of limatec change and the Change (IPCC) established in 1988. Dialogue and need for environmental protection occasion new op- mutual understanding regarding problems faced by portunities for cooperation between researchers and humanity constitute a huge challenge. Political con- policy-makers. Efforts are being made worldwide, siderations and the competing interests of individual at various levels and on different scales, to integrate countries frequently hinder the realization of global actions undertaken by scientists and other interested ecological aims, as exemplified by the fiasco of theo C - parties (Falkenmark, Gottschalk, Lundqvist & Wout- penhagen Climate Change Conference in 2009 (Tollef- ers, 2004; Holmes & Clark, 2008; Totlandsdal, Fudge, son, 2009)1. Sanderson, van Bree & Brunekreef, 2007). A posi- The European Union (EU) is a leader in the adop- tive example of such activity is provided, e.g., by the tion of eco-friendly solutions, establishing highly am- bitious objectives to be reached by the year 2020. In Correspondence concerning this article should be addressed to: 2008, the European Parliament passed a package of Rafał Baum, Poznan University of Life Sciences, 28 Wojska Pol- resolutions referred to as the climate package (the so- skiego Str., 60-637 Poznań, Poland, e-mail: [email protected] called “3x20”). The aim of the package was to launch, www.ce.vizja.pl Vizja Press&IT 64 Vol. 7 Issue 1 2013 63-74 Rafał Baum, Karol Wajszczuk, Benedykt Pepliński & Jacek Wawrzynowicz within the EU, a “green revolution” in industry and The study is a theoretical review that takes a heuris- power generation, i.e., a transition from high-emission tic approach. The presented forecast is a fragment of coal to renewable energy sources and energy conser- broader analyses conducted within the framework of vation. In the general opinion, the adopted package a research project2. achieves a balance between environmental concerns and the interests of the industrial sector. 2. The macroeconomic context The assumed objectives adopted by the EU have re- In the above-mentioned EU climate and energy pack- sulted in increased interest in the cultivation of energy age (December 17, 2008), it was assumed that by 2020, crops. Efforts undertaken by scientists aimed at sys- the EU member countries would realize the following tematizing information on energy crop cultivation are objectives: evident. Efficient practice requires guidelines concerning - reduction of CO2 emission by 20% compared with the utilization of agricultural biomass for energy purpos- 1990, es and optimal production (both quantitative and quali- - increased consumption in the EU of energy from tative). Introduction of the above-mentioned solutions renewable sources from 8.5 to 20% of energy is complex. Production of energy biomass will provide needs, farmers with new prospects and possibilities to diversify - an increase in energy efficiency of 20%. agricultural activity. Some of these crops may compete In Poland, in November 2009, a document entitled “En- for land and other resources with traditional crops, while ergy policy in Poland by the year 2030” was adopted by other crops may be grown on marginal lands or even eco- the Council of Ministers (Ministerstwo Gospodarki, logically degraded areas and thus have a positive effect 2009). It presents the government’s strategy and propos- on the environment (Zegada-Lizarazu et al., 2010). es means of meeting the most important challenges fac- In view of the circumstances described above, there ing the Polish power industry. The primary objective of has been growing interest in studies that present future energy policy in terms of the development and utiliza- energy scenarios. In these studies, energy demand (in tion of renewable energy sources is to increase the pro- various forms) and available energy resources (non- portion of renewables in the total consumption of en- renewable and renewable) are estimated. Then, the en- ergy by at least 15% by 2020 and to further increase this ergy balance, i.e., a comparison of energy supply and index in the following years. Moreover, it was assumed demand (Sørensen, 2008), is assessed. that in 2020, a 10% share of biofuels will be achieved in the automotive fuels market and that the utilization of 1. Aim and methodology of the study second-generation biofuels will be increased. The circumstances described above indicate the need Poland has considerable renewable energy re- for analyses of the potential of Polish agriculture to sources (it is estimated that the technical potential of produce biomass for energy production. The primary renewables exceeds that of Denmark and Sweden) that aim of this paper is to present a forecast of the produc- may be used to meet almost 50% of national energy tion potential of agricultural biomass in Poland in the demand. Nevertheless, of the total energy balance in year 2020. 2010, energy from renewable sources amounted to The detailed scope of the study will include the fol- approximately 9% of final energy consumption. Nu- lowing factors: merous forecasts conclude [e.g., the Polish Ministry of - forecasted consumption of renewable energy in Economy (Ministerstwo Gospodarki, 2009) or the In- terms of energy types (electrical energy, heat, auto- stitute for Renewable Energy (IEO, 2010)] that in 2020 motive biofuels), a vast majority of final energy from renewable energy - energy potential of agriculture (sources of agricul- sources will need to be produced from biomass, par- tural biomass, utilization structure of agricultural ticularly agricultural biomass. biomass, the volume of production of solid bio- Poland is perceived, within the EU, as a country mass, biogas and biofuels, cultivation area of en- with a high potential for biomass production for en- ergy crops), and ergy purposes. The results of analyses and estimates - barriers to the utilization of biomass. prepared by some specialists indicate that, in Poland, CONTEMPORARY ECONOMICS
Recommended publications
  • Species List
    Appendix C: Species List Appendix C: Species List 83 Windom Wetland Management District Plant Species List Grasses Agrostis alba Red top Agrostis stolonifera var. palustris Creeping bent Agropyron repens Quackgrass Andropogon gerardi Big bluestem Andropogon scoparius Little bluestem Bouteloua curtipendula Side-oats grama Bouteloua gracilis Blue grama Bouteloua hirsuta Hairy grama Bromus inermus Smooth brome grass Buchloe dactyloides Buffalo grass Calamagrostis canadensis Bluejoint Calamagrostis inexpansa Bluejoint Calamovilfa longifolia Sand reedgrass Deschampsia caespitosa Tufted hairgrass Distichlis stricta Salt grass Elymus canadensis Canada wild rye Elymus virginicus Virginia wild-rye Ergrostis spp. Lovegrass Hordeum jubatum Foxtail barley Hordeum pusillum Little barley Koeleria cristata Junegrass Leersia oryzoides Rice cutgrass Muhlenbergia cuspidata Plains muhly Muhlenbergia richardsonis Mat muhly Panicularia pallida Pale Manna-grass Panicum virgatum Switchgrass Phalaris arundinacea Reed canary grass Phleum pratense Timothy Phragmites australis Plume grass Phragmites communis Flag grass Poa arida Plains bluegrass/bunch speargrass Poa pratensis Kentucky bluegrass Puccinella nuttaliana Alkali grass Sorghastrum nutans Indiangrass Spartina pectinata Prairie cordgrass Sporobolus heterolepis Prairie dropseed Stipa comata Needle and Thread Stipa spartea Porcupine grass Aquatic Monocots Carex atherodes Sedge Ceratophyllum demersum Coontail Juncus spp. Rushes Lemna spp. Duckweeds Myriophyllum spp. Milfoils Nelumbo lutea American lotus Nympyhae
    [Show full text]
  • Jimmy Carter PMC 2006 Annual Technical Report
    USDA United States 2006 ANNUAL TECHNICAL REPORT Department of Agriculture JIMMY CARTER Natural Resources PLANT MATERIALS CENTER Conservation Service Americus, Georgia SILVOPASTURE FIELDDAY JUNE 2006 IN EARLY CO GEORGIA Landowners, NRCS ,GA.Soil &Water Con Com,GA Forestry Commission ,FVSU, Auburn University, GA Soil & Water Con Districts A Technical Summary of Plant Materials Studies At the Jimmy Carter Plant Materials Center Americus, Georgia STATE CONSERVATIONIST James E. Tillman, Sr. NAT’L PLANT MATERIALS SPECIALIST Robert Escheman PLANT MATERIALS SPECIALIST Vacant PLANT MATERIALS CENTER STAFF Charles M. Owsley Manager Malcome S. Kirkland Asst. Manager Vacant Biol. Technician Larry L. Vansant Biol. Technician STATE CONSERVATIONISTS ADVISORY COMMITTEE Purpose: The purpose of the committee is to provide leadership in the coordination, communication, support, and integration of applied plant science technology within and between states, the Regional and National Plant Materials Advisory Committees and other partners. James E. Tillman, Sr. – Chairman Athens, GA Walter W. Douglas Columbia, SC William Gary Kobylski Auburn, AL Mary K. Combs Raleigh, NC PLANT MATERIALS TECHNICAL COMMITTEE The Plant Materials Technical Committee provides input to the PM Advisory process. The PM Technical Committee may be on a state, multi-state or other regional/local level for a single PMC or for multiple Plant Materials Centers. Responsibilities include: • Provides overall technical leadership in the identification, integration, and prioritization of plant technology needs. • Develops recommendations for addressing needs and submits information to the State Conservationist’s Plant Materials Advisory Committee for review and approval. • Promotes the transfer of developed applied science technology. Technical Committee Members NAME LOCATION Lane Price, SRC, NRCS Raleigh, NC Robert Escheman, NPL-NRCS Washington DC Vacant, SRC NRCS Athens, Ga Eddie Jolley, NRCS Auburn Ala Vacant, SRC, NRCS Columbia SC Vacant, PMS, NRCS Athens Ga Dr.
    [Show full text]
  • Andropogon Gerardii (Big Bluestem) Andropogon Scoparius (Little
    Andropogon gerardii (Big bluestem) Calamagrostis acutiflora (Feather Reed Grass) Andropogon scoparius (Little bluestem) Calamagrostis brachytricha (Korean Feather Reed Grass) Arrhenatherum elatius ssp. bulbsoum (Bulbous Oat Grass) Carex (Sedge) Bouteloua curtipendula (Sideoats grama) Carex morrowii (Japanese sedge) Bouteloua gracilis (Blue grama) Chasmanthium latifolium (Northern Sea Oats) Calamagrostis acutiflora (Feather Reed Grass) Elymus villosus (Silky Wild Rye) Calamagrostis brachytricha (Korean Feather Reed Grass) Elymus virginicus (Virginia Wild Rye) Carex (Sedge) Hakonechloa macra (Japanese Forest Grass) Carex elata (Tufted sedge) Hystrix patula (Bottlebrush Grass) Carex hachijoensis (Japanese sedge) Uniola latifolia (River oats) Carex morrowii (Japanese sedge) Chasmanthium latifolium (Northern Sea Oats) Deschampsia caespitosa (Hair grass) Elymus canadensis (Canada Wild Rye) Calamagrostis acutiflora ‘Avalanche’, ‘Eldorado’, ‘Karl Elymus villosus (Silky Wild Rye) Foerster’, ‘Overdam’ Elymus virginicus (Virginia Wild Rye) Calamagrostis brachytricha Erianthus ravennae (Plume grass) Chasmanthium latifolium Reseeds Festuca glauca (Blue fescue) Chasmanthium latifolium ‘River Mist’ Reseeds Helictotrichon sempervirens (Blue oat grass) Deschampsia cespitosa ‘Goldtau’, ‘Schottland’ Hierochloe odorata (Vanilla Sweet Grass) Erianthus ravennae Imperata ‘Red Baron’ (Japanese Blood Grass) Festuca glauca ‘Elijah Blue’ Juncus effuses (Common rush) Helictotrichon sempervirens Juncus tenuis (Path rush) Helictotrichon sempervirens ‘Sapphire’ Koeleria
    [Show full text]
  • The Cytohistology of Foliar and Floral Initiation in Andropogon Gerardi Vitman IMY VINCENT BOLT, Oidahoma State University, Stillwater
    BIOLOGICAL SCIENCES us The Cytohistology of Foliar and Floral Initiation in Andropogon gerardi Vitman IMY VINCENT BOLT, OIdahoma State University, Stillwater The present study wu conducted to determine the time of innore.­ cence initiation and the sequence and derivaUon of foliar and noral organs in Aftdropogcm gerardt (Big bluestern). It bas become increuingly evt­ dent that such detalled information 11 essential for the precise interpre­ tation of the results of physiological and agronomic research. Recent researches (Barnard, 1955; Holt, 19M) have demonetrated a need for broader coverage of anatomical knowledge in the genera of the famUy Grammeae, with empbasll on the cytohlltology of noral initiation. The literature on this IUbject bas been reviewed in a prevtoU8 paper (Hott, 19M). In a more recent stUdy (Barnard, 1957) the following species were examined: BGmbua G".tI4~eo, TritkMm autjwm, LoUvm mvltjflorvm~Bromu ••foloidea Kunth (Bromua CGtlaarlw.. Vah! in "Stand- 16 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1957 ardized Plant Names"), Danthonia sefacea, Ehrharta erecta and Stipa hllalfna. Barnard found very little difference in the histology of tIoral organogenesis in these species. He stated that they represent a reason­ able crou section of the gramineous types. The present paper deals w:th differences found in the histology of big bluestem. MATERIALS AND METHODS Plants were collected from a railroad right-of-way and on open prairie near Ames, Iowa, as early as 1951. Subsequent collectio_ls of similar clones were made from an open prairie near Stillwater, Oklahoma. in 19M and 19M. Chromosome counts on the types studied were made to identty similar clones.
    [Show full text]
  • Is Grass Collection (Ecotypes of Pasture and Turf Grass Species, Ornamental and Wild Growing, Native and Foreign)
    Sta tus of National Grass Collection and its utilization INTRODUCTION Bo tan ica l Gard en of PBAI i n B yd goszcz h as b een active since 1951. Plant collections are connected with scientific activity, co-co-ordinatedordinated by The National Centre for Plant Genetic Resources of PBAI in Radzików. The main important collection (()g(ypsince 1971) is grass collection (ecotypes of pasture and turf grass species, ornamental and wild growing, native and foreign). There are also collections: plants for reclamation of waste areas and abandoned lands, usable pl ant s ––memedici nal , aromati c, d ecorati ve, (including glasshouse species). Since 1.01.2007 Botanical Garden has been a part of National Centre for Plant Genetic Resources in Radzików „National grass collection” in Botanical Garden in Bydgoszcz Established in 1971 as „edtiducation collection” for recognize grass species occurrenced during collecting missions. Systematically enlargement for species from different regions, at present accounts ~~650650 taxons. National grass collection Arundo donax Erianthus f. variegata ravennae Miscanthus Calamagrostis sinenesis x acutiflora National grass collection Pennisetum americanum Purple Majesty Hordeum jubatum Lamarckia aurea Pennisetum setaceum Utilization of grass collection in research projects Evaluation for reclamation of devastated areas Puławy – nitroggpen plant Grant 19921992--19951995 Puławy, Spartina pectinata Utilization in research projects Bieruń near Tychy ((ppUpper Silesia region), mine waste dump Grant 1995-1997 Utilization
    [Show full text]
  • Butterflies of Citrus County and Host Plants
    Butterflies of Citrus County ~---4- --•;... ____ - Family I Species Host plant Hesperiidae SkipQers Phocides Qigmalion Mangrove Skipper ~mangrove herbs, vines, shrubs, and trees in the pea family (Fabaceae) including false indigobush (Amorpha fruticosa L.), American hogpeanut (Amphicarpaea bracteata [L.) Fernald), Atlantic pidgeonwings or butterfly pea (Clitoria mariana L.), groundnut (Apios ~vreus clarus Silver-spotted Skip~ americana Medik.), American wisteria (Wisteria frutescens [L.) Poir.) and the introduced Dixie ticktrefoil (Desmodium tortuosum [Sw.] DC.), kudzu (Pueraria montana [Lour.] Merr.), black locust (Robinia pseudoacacia L.), Chinese wisteria (Wisteria sinensis [Sims) DC.) and a variety of other legumes Urbanus prqJg_µs Long-t~.Ued SkiQpec vine legumes including various beans (Phaseolus), hog peanuts (Amphicarpa bracteata), beggar's ticks (Desmodium), blue peas (Clitoria), and wisteria (Wisteria) Various legumes inclu ding wild and cu ltivated beans (Phaseolus), begga r's ticks Urbanus dorantes Dorantes Longtail (Desmodium), and bl ue peas (Clit oria ) -· Beggar\'s ticks (Desmodium); occasionally false indigo (Baptisia) and bush clover Achalarus ly-ciades Hoar.y_r;_ggg {Lespedeza); all in the pea family {Fabaceae) - pea family (Fabaceae) including beggar's ticks (Desmodium), bush clover (Lespedeza), Thor'lbes P'llades Northern Cloud'lwing clover (Trifolium), lotus (Hosackia), and others. -----· Thory-bes bathy-llus Southern Cloudywing Potato bean, Apios americana. Ozark milkvetch, Astragalus distortus var. engelmanni ~ ---- Lespedezas (Lespedeza spp .) are reported as well as Florida Hoarypea (Tephrosia l ibQr:_y_bes confusis Confused Cloudy-wing florid a) . -· -- -------- Staphy:lus hayhurst_ii Ha yh u r?J?-5.IAJ.\QQ Wi ri_g Lambsquart ers {Che nopodium) in the goosefoot family (Chenopodiaceae ), and occasiona lly chaff flower (Alternanthera) in the pigweed family (Amaranthaceae).
    [Show full text]
  • THE SUITABILITY of NATIVE WARM-SEASON GRASSES for EQUINE Shayan M
    THE SUITABILITY OF NATIVE WARM-SEASON GRASSES FOR EQUINE Shayan M. Ghajar Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop & Soil Environmental Sciences Benjamin F. Tracy, Chair Bridgett McIntosh Harold McKenzie John Fike June 5, 2020 Blacksburg, Virginia The suitability of native warm-season grasses for equine Shayan M. Ghajar Abstract (Academic) Introduced cool-season grasses are dominant in Virginia’s grasslands, but their high digestible energy and non-structural carbohydrate (NSC) levels pose a risk for horses prone to obesity and laminitis. Native warm-season grasses (NWSG) have lower digestible energy and NSC levels that may be more suitable for horses susceptible to laminitis. The overall objectives of this research were to 1) assess voluntary intake, toxicological response, and apparent digestibility of NWSG hays fed to horses; 2) evaluate the characteristics of three NWSG species under equine grazing; and 3) evaluate establishment strategies for NWSG and wildflowers in Virginia. For the first objective, a hay feeding trial was conducted with 9 Thoroughbred geldings in a 3 x 3 Latin square design. Voluntary dry matter intake of indiangrass (Sorghastrum nutans) and big bluestem (Andropogon gerardii) hays by horses were 1.3% and 1.1% of BW/d, significantly lower than orchardgrass (Dactylis glomerata), an introduced cool-season grass, at 1.7% of BW/d. Biomarkers for toxicity remained within acceptable ranges for all treatments. Apparent DMD did not differ among hays, ranging from 39 to 43%. Non-structural carbohydrate levels were below the maximum recommended concentration for horses susceptible to laminitis.
    [Show full text]
  • Switchgrass Research at the WRRC
    Switchgrass Research at the WRRC Christian Tobias August 09, 2016 Grasslands are an Integral Part of American Identity Banished from the thoroughfare and the field, it bides its time to return, and when vigilance is relaxed, or the dynasty has perished, it silently resumes the throne from which it has been expelled, but which it never abdicates. -John James Ingalls shortgrass prairie mixed prairie tallgrass prairie 95% of the Great Plains Prairie Ecosystem is Gone Iowa hay census data Smith, D.D. 1998 J. Iowa Acad. Sci. Food Production Requirements •Assuming no change in population growth, food consumption patterns and food waste management, the following production increases must take place by 2050: •cereals production must increase by 940 million tonnes to reach 3 billion tonnes; •meat production must increase by 196 million tonnes to reach 455 million tonnes; •and oilcrops by must increase by 133 million tonnes to reach 282 million tonnes. Renewable Energy Legislation/Mandates Year Milestone 2005 Billion Ton Study Energy Policy Act 2006 Advanced Energy Initiative 2007 Energy Independence and Security Act (EISA) 2008 Farm Bill Bioenergy Crop Assistance Program 2009 Establishment of BIWG 2010 USDA roadmap USDA Farm to Fly Partnership 2011 Billion Ton Study Update 2012 USDA Establishes Five Regional Biomass Research Centers 2013 USDA Farm to Fly 2.0 Partnership 2016 Billion Ton Update Source: Billion Ton Study Update Second Generation Cellulosic Fuel Industry is Viable but Growing Slowly ● Hugoton KS 25-30 Mga/yr Ethanol wheat straw ●
    [Show full text]
  • Aullwood's Prairie Plants
    Aullwood's Prairie Plants Taxonomy and nomenclature generally follow: Gleason, H.A. and A. Cronquist. 1991. Manual of Vascular Plants of the Northeastern United States and Adjacent Canada. Second ed. The New York Botanical Garden, Bronx, N.Y. 910 pp. Based on a list compiled by Jeff Knoop, 1981; revised November 1997. 29 Families, 104 Species (98 Native Species, 6 Non-Native Species) Angiosperms Dicotyledons Ranunculaceae - Buttercup Family Anemone canadensis - Canada Anemone Anemone virginiana - Thimble Flower Fagaceae - Oak Family Quercus macrocarpa - Bur Oak Caryophyllaceae - Pink Family Silene noctiflora - Night Flowering Catchfly* Dianthus armeria - Deptford Pink* Lychnis alba - White Campion* (not in Gleason and Cronquist) Clusiaceae - St. John's Wort Family Hypericum perforatum - Common St. John's Wort* Hypericum punctatum - Spotted St. John's Wort Primulaceae - Ebony Family Dodecatheon media - Shooting Star Mimosacea Mimosa Family Desmanthus illinoensis - Prairie Mimosa Caesalpiniaceae Caesalpinia Family Chaemaecrista fasiculata - Partridge Pea Fabaceae - Pea Family Baptisia bracteata - Creamy False Indigo Baptisia tinctoria - False Wild Indigo+ Baptisia leucantha (alba?) - White False Indigo Lupinus perennis - Wild Lupine Desmodium illinoense - Illinois Tick Trefoil Desmodium canescens - Hoary Tick Trefoil Lespedeza virginica - Slender-leaved Bush Clover Lespedeza capitata - Round-headed Bush Clover Amorpha canescens - Lead Plant Dacea purpureum - Purple Prairie Clover Dacea candidum - White Prairie Clover Amphicarpa bracteata
    [Show full text]
  • 1 Detectable Endosperm in Grass Seed Units Survey Results
    Detectable Endosperm in Grass Seed Units Survey Results Deborah Meyer and Gil Waibel Purity Subcommittee August 15, 2018 The AOSA/SCST Purity Committee conducted a survey to determine the types and predominance of grass species seed analysts encounter for purity analyses and how determination of pure seed with respect to caryopsis size or detectable endosperm is made. Species requiring application of the Uniform Blowing Method during purity analysis were not included in this survey (except for comments made under question 12). We received 30 responses, some from individuals and some submitted as a single group response of all analysts within a lab. Each group response sheet was scored only once. We thank respondents for taking the time to participate in this very important survey. 1. Do you test lawn grass species on a regular basis? Yes = 28 (93%); No = 2 (7%) 2. Do you test grain type species on a regular basis? Yes = 29 (97%); No = 1 (3%) 3. Do you test native grass species on a regular basis? Yes = 19 (63%); No = 11 (37%) 4. We asked how many respondents test the kinds of grass seeds assigned to PSU 21, 22, 23 where the pure seed unit must contain a caryopsis that is at least 1/3 the length of the palea measured from the base of the rachilla. A tally of responses for species tested, grouped by PSU number, are show in descending order of frequency. Number of analysts testing PSU Kind of Seed the species 29†‡ 21 Festuca arundinacea Schreb., tall fescue 29†‡ 21 Lolium perenne L., perennial ryegrass 27†‡ 21 Lolium multiflorum Lam., annual ryegrass (Italian ryegrass) 22†‡ 21 Lolium ×hybridum Hausskn., intermediate ryegrass 18† 21 Bromus spp., brome 18‡ 21 Festuca spp., fescue 16† 21 Elymus trachycaulus (Link) Gould ex Shinners subsp.
    [Show full text]
  • 2010 Grasses
    2010 Grasses Acorus gramineus ‘Ogon’ 2.5 x 3.5” pot Andropogon gerardi (Big Blue Stem) Bare Root Arrenatherum elatius bulbosum ‘Variegatum’ 2.5 x 3.5” pot Calamagrostis acutiflora ‘Avalanche’ 2.5 x 3.5” pot Calamagrotis brachyticha 2.5 x 3.5” pot Calamagrostis acutiflora ‘Eldorado’ 2.5 x 3.5” pot Calamagrostis acutiflora ‘Karl Foerster’ 2.5 x 3.5” pot Calamagrostis acutiflora ‘Overdam’ Bare Root Carex Appalachia 2.5 x 3.5” pot Carex flacca (glauca) ‘Blue Zinger” 2.5 x 3.5” pot Carex muskingumensis ‘Little Midge’ Bare Root Carex muskingumensis ‘Oehme’ Bare Root Carex riparia ‘Variegata’ 2.5 x 3.5” pot Carex speciosa 2.5 x 3.5” pot Deschampsia caespitosa ‘Goldtau’ (Gold Dew) 2.5 x 3.5” pot Deschampsia caespitosa ‘Schottland’ 2.5 x 3.5” pot Festuca g. ‘Boulder Blue’ Bare Root Festuca ovina ‘Elijah Blue’ Bare Root Hakonechloa macra ‘Aureola’ Bare Root Lymus arenarius glaucous ‘Blue Dune’ Bare Root Miscanthus giganteus Bare Root Miscanthus sinensis ‘Blondo Bare Root Miscanthus sinensis ‘Gold Bar’ Bare Root Miscanthus sinensis ‘Goliath’ Bare Root Miscanthus sinensis ‘Graziella’ Bare Root Miscanthus sinensis ‘Malepartus’ Bare Root Miscanthus sinensis ‘Purpurascens’ 2.5 x 3.5” pot Miscanthus sinensis ‘Silver Feather’ 2.5 x 3.5” pot Panicum amarum ‘Dewey Blue’ Bare Root Panicum virgatum ‘North Wind’ 2.5 x 3.5” pot Panicum virgatum ‘Prairie Sky’ Bare Root Panicum virgatum ‘Red Sunset’ Bare Root Pennisetum alopecuroides ‘Hameln’ 2.5 x 3.5” pot Pennisetum alopecuroides ‘Red Head’ 2.5 x 3.5” pot Pennisetum alopecuroides ‘Piglet’ 2.5 x 3.5” pot Schizacharium scoparium ‘Little Blue Stem’ 2” plug Schizacharium scoparium ‘Carousel’ 2.5 x 3.5” pot Schizacharium scoparium ‘The Blues’ 2.5 x 3.5” pot Sorghastrum nutans ‘Sioux Blue’ Bare Root Sporobolos heterolepsis (Prairie Drop Seed) 2” plug .
    [Show full text]
  • Maize Streak Virus: I
    Maize Streak Virus: I. Host Range and Vulnerability of Maize Germ Plasm VERNON D. DAMSTEEGT, Research Plant Pathologist, Plant Disease Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Frederick, MD 21701 ABSTRACT were obtained from USDA Regional Damsteegt, V. D. 1983. Maize streak virus: I. Host range and vulnerability of maize germ plasm. Plant Introduction stations, state Plant Disease 67:734-737. experiment stations, and commercial seed companies. Authenticity of species One hundred thirty-eight grass accessions, 529 maize hybrids, inbreds, exotic lines, and sweet corn or line designation was determined by the cultivars, several Sorghum, Tripsacum, and Zea species, and major cereal crop cultivars were tested seed suppliers. The world collections of for susceptibility to maize streak virus disease in both seedling and six- to eight-leaf stages. Tripsacum spp., Sorghum spp., and Zea Fifty-four grass species were symptomatic hosts (verified by back-assays to corn) including 14 annual and 31 perennial hosts not reported previously. All maize lines were susceptible in the spp. were obtained from Regional Plant seedling stage except Revolution and J-2705, which were highly resistant after the four-leaf stage. Introduction stations, CIMMYT, and D. Two Tripsacum species and several Tripsacum plant introductions, nursery selections, and exotic H. Timothy's Tripsacum nursery at Tripsacum collections were susceptible. Although most Zea mays accessions were susceptible, a few North Carolina State University. collections of Z. mays subsp. parviglumis var. huehuetenangensisfrom Guatemala were resistant. Test plants were started in 10-cm clay Cultivars of commonly grown cereal crops varied in susceptibility. Several grass species in the pots within the containment area.
    [Show full text]