Group Theory –

Total Page:16

File Type:pdf, Size:1020Kb

Group Theory – DRAFT 2019 February 26 Mathematical Methods in Physics - 231B { Group Theory { Eric D'Hoker Mani L. Bhaumik Institute for Theoretical Physics Department of Physics and Astronomy University of California, Los Angeles, CA 90095, USA [email protected] The purpose of this course is to present an introduction to standard and widely used methods of group theory in Physics, including Lie groups and Lie algebras, representation theory, tensors, spinors, structure theory of solvable and simple Lie algebras, homogeneous and symmetric spaces. Contents 1 Definition and examples of groups 5 1.1 A little history . .5 1.2 Groups . .6 1.3 Topological groups . .9 1.4 Lie Groups . 12 1.5 Vector spaces . 13 1.6 Lie Algebras . 13 1.7 Relating Lie groups and Lie algebras . 15 1.8 Tangent vectors, tangent space, and cotangent space . 16 2 Matrix Lie groups and Lie algebras 18 2.1 The general linear group GL(n)........................ 18 2.2 Closed subgroups of the general linear group . 21 2.3 The orthogonal groups SO(n) and Lie algebras so(n)............ 21 2.4 The symplectic group Sp(2n) and Lie algebra sp(2n)............ 23 2.5 The unitary group SU(n) and Lie algebra su(n)............... 25 2.6 Cartan subalgebras and subgroups and the center . 26 2.7 Summary of matrix Lie groups and Lie algebras . 26 2.8 Non-semi-simple matrix groups . 30 2.9 Invariant differential forms, metric, and measure . 31 2.10 Spontaneous symmetry breaking, order parameters . 37 2.11 Lie supergroups and Lie superalgebras . 38 3 Representations 41 3.1 Representations of groups . 41 3.2 Representations of Lie algebras . 43 3.3 Transformation of a vector space under a representation . 44 3.4 Direct sum of representations . 45 3.5 Schur's Lemma . 46 3.6 Unitary representations . 47 3.7 Tensor product of representations . 49 3.8 Characters of Representations . 50 4 Representations of SL(2; C), SU(2), and SO(2; 1) 53 4.1 Irreducible representations of the Lie group SU(2) . 53 4.2 Finite-dimensional representations of sl(2; C)................. 54 4.3 Infinite-dimensional representations of sl(2; C)................ 57 4.4 Harmonic oscillator representation of so(2; 1; R)............... 57 4.5 Unitary representations of so(2; 1; R)..................... 58 4.6 An example of the continuous series . 60 2 5 Tensor representations 62 5.1 Tensor product representations . 62 5.2 Symmetrization and anti-symmetrization . 63 5.3 Representations of SU(3)............................ 64 5.4 Representations of SU(n)........................... 66 6 Spinor representations 68 6.1 Spinor representations of SO(3; R)...................... 68 6.2 The Clifford Algebra . 69 6.3 Representations of the Clifford algebra . 70 6.4 Spinor representations of so(d)......................... 72 6.5 Reducibility and Weyl spinor representations . 73 6.6 Charge and complex conjugation . 74 6.7 Spinor representations of so(d − 1; 1; R).................... 75 7 Roots, weights, and representations 78 7.1 The Cartan-Killing form . 78 7.2 Weights . 79 7.3 Roots . 80 7.4 Raising and Lowering operators . 82 7.5 Finite-dimensional representations . 82 7.6 The example of SU(3) ............................. 84 7.7 The root lattice of An = sl(n +1)....................... 86 7.8 The root lattice of Dn = so(2n)........................ 87 7.9 The root lattice of Bn = so(2n +1)...................... 89 7.10 The root lattice of Cn = sp(2n +1)...................... 90 8 Representations of the classical Lie algebras 92 8.1 Weyl reflections and the Weyl group . 92 8.2 Finite-dimensional irreducible representations of sl(n + 1; C)........ 93 8.3 Spinor representation of so(2n + 1; C)..................... 94 8.4 Spinor representations of so(2n; C)...................... 94 9 The structure of semi-simple Lie algebras 96 9.1 Some properties of simple roots . 96 9.2 Classification of finite-dimensional simple Lie algebras . 97 10 Weyl's character formulas 102 10.1 Characters on the maximal torus . 103 10.2 Weyl's first formula . 104 3 Bibliography Standard texts for physicists • H. Georgi, Lie Algebras and Particle Physics, Benjamin/Cummings, 1982; • B.G. Wybourne, Classical Groups for Physicists, Wiley, 1974; • W. K. Tung, Group Theory in Physics, World Scientific; • P. Di Francesco, P. Mathieu, D. S´enechal, Conformal Field Theory, Springer 1997, Chapters 13 and 14. Classics and more mathematical • H. Weyl, Classical Groups, Princeton, 1946. • C. Chevalley, Theory of Lie Groups, Princeton, 1948; • E. Cartan, The Theory of Spinors, Hermann, Paris 1966, Dover; • S. Helgason, Differential Geometry, Lie Groups, Symmetric Spaces, Acad. Press 1978; • M. Nakahara, Geometry, Topology and Physics, Institute of Physics Publishing (2005) (no group theory per se, but great for topology and differential geometry); Very useful but more mathematical • B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer Verlag Graduate Texts in Mathematics 222 (2015); • W. Fulton and J. Harris, Representation Theory, Springer Verlag, 1991; • D.P. Zelobenko, Compact Lie Groups and Their Representations, Tansl. Math. Monographs, Vol. 40, Am. Math. Soc., 1973; • N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol 22, Am. Math. Soc., 1968; • F.D. Murnaghan, The Theory of Group Representations, Johns Hopkins, 1938; Others • A.W. Knapp, Lie Groups beyond an Introduction, Birkh¨auser2004; • J. Humphreys, Introduction to Lie Algbras & Representation Theory, Springer, 1980; • N. Jacobson, Lie Algebras, Wiley, 1962; Dover, 1979; • I.R. Porteous, Clifford Algebras and the Classical Groups, Cambridge, 1995; 4 1 Definition and examples of groups In this section, we shall begin with a little history, and then present the basic definitions and some simple examples of groups, subgroups, topological groups, discrete groups, parametric groups, Lie groups, and Lie algebras. 1.1 A little history The mathematical concept of a group goes back to Joseph-Louis Lagrange (1736 - 1813) and Niels Abel (1802 - 1829), and was articulated by Evariste Galois (1811 - 1832) in the context of subgroups of the group of permutations of the roots of a polynomial. Lie groups and Lie algebras were introduced by Sophus Lie (1842 - 1899) around 1870. In physics the concept of a group arises almost invariably in the context of a symmetry or invariance of a physical quantity or of an equation which described a physical quantity. Greek antiquity appreciated the beauty of regular polygons and polyhedra. Galileo and Newton undoubtedly understood the notions of translation and rotation invariance, such as in Galilean relativity, and used them without invoking the notion of a group. Poincar´e(1854 - 1912) observed the invariance of Maxwell's equations (without sources) under Lorentz and Poincar´etransformation. It is fair to state that Einstein (1879 - 1955) pioneered elevating the symmetry of the equations to a physical principle in his 1905 theory of special relativity (Poincar´einvariance), but even more clearly in his 1915 theory of general relativity (invariance under general coordinate transformations). Since then, group theory has become a dominant organizing principle of modern physics: Herman Weyl (1885 - 1955) applied group theory to quantum mechanics, Lev Landau (1908 - 1968) based his theory of second order phase transitions on the group-theoretic symmetry properties of an order parameter; Murray Gell-Mann (1929 - present) used SU(3) group theory to predict the Ω particle; and the Standard Model of Particle Physics is built on the Yang-Mills theory for the gauge group SU(3)c ×SU(2)L ×U(1)Y , though some of this symmetry is spontaneously broken and not manifest at low energies. One of the biggest theoretical questions in modern theoretical and experimental physics is to find out what lies beyond the Standard Model. The most popular theoretical specu- lations are grand unification, which is based on extending SU(3)c × SU(2)L × U(1)Y to a larger unifying group, and supersymmetry which is based on extending the Poincar´egroup to a supergroup, with fermionic parameters. One of the most active areas of research over the past decade has been the conformal bootstrap program, based on exploiting the prop- erties of the conformal group to study quantum field theories that do not necessarily admit a Lagrangian or Hamiltonian description. 5 1.2 Groups A set G equipped with a binary operation ? is a group G? provided G and ? satisfy, 1. Closure: For any pair of elements g1; g2 2 G the operation obeys g1 ? g2 2 G; 2. Associativity: For any triplet of elements g1; g2; g3 2 G the operation obeys (g1 ? g2) ? g3 = g1 ? (g2 ? g3) = g1 ? g2 ? g3; 3. Identity: There exists an element e 2 G such that e ? g = g ? e = g for all g 2 G; 4. Inverse: For every g 2 G, there exists a g−1 2 G such that g ? g−1 = g−1 ? g = e. The group axioms imply that the identity element e is unique, and that for every element −1 g, the inverse g is unique. The direct product G1 × G2 of two groups G1 and G2 with respective operations ∗1 and ∗2 is a group with elements (g1; g2) under the operation ∗ defined by (g1; g2) ∗ (h1; h2) = (g1 ∗1 h1; g2 ∗2 h2) with g1; h1 2 G1 and g2; h2 2 G2. A group G? is commutative or Abelian if the product satisfies g1 ? g2 = g2 ? g1 for all g1; g2 2 G. Otherwise, the group is said to be non-commutative or non-Abelian. When no confusion is expected to arise, one often drops reference to the operation in denoting a group, so that G∗ is simply denoted G. 1.2.1 Subgroups, invariant subgroups, and simple groups A subgroup H of a group G is a subset H ⊂ G such that h1 ? h2 2 H for all h1; h2 2 H and h−1 2 H for all h 2 H.
Recommended publications
  • Arxiv:1812.11658V1 [Hep-Th] 31 Dec 2018 Genitors of Black Holes And, Via the Brane-World, As Entire Universes in Their Own Right
    IMPERIAL-TP-2018-MJD-03 Thirty years of Erice on the brane1 M. J. Duff Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, USA & Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom & Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, United Kingdom Abstract After initially meeting with fierce resistance, branes, p-dimensional extended objects which go beyond particles (p=0) and strings (p=1), now occupy centre stage in theo- retical physics as microscopic components of M-theory, as the seeds of the AdS/CFT correspondence, as a branch of particle phenomenology, as the higher-dimensional pro- arXiv:1812.11658v1 [hep-th] 31 Dec 2018 genitors of black holes and, via the brane-world, as entire universes in their own right. Notwithstanding this early opposition, Nino Zichichi invited me to to talk about su- permembranes and eleven dimensions at the 1987 School on Subnuclear Physics and has continued to keep Erice on the brane ever since. Here I provide a distillation of my Erice brane lectures and some personal recollections. 1Based on lectures at the International Schools of Subnuclear Physics 1987-2017 and the International Symposium 60 Years of Subnuclear Physics at Bologna, University of Bologna, November 2018. Contents 1 Introduction 5 1.1 Geneva and Erice: a tale of two cities . 5 1.2 Co-authors . 9 1.3 Nomenclature . 9 2 1987 Not the Standard Superstring Review 10 2.1 Vacuum degeneracy and the multiverse . 10 2.2 Supermembranes .
    [Show full text]
  • Arxiv:2003.06292V1 [Math.GR] 12 Mar 2020 Eggnrtr N Ignlmti.Tedaoa Arxi Matrix Diagonal the Matrix
    ALGORITHMS IN LINEAR ALGEBRAIC GROUPS SUSHIL BHUNIA, AYAN MAHALANOBIS, PRALHAD SHINDE, AND ANUPAM SINGH ABSTRACT. This paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decompositionwith respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups. 1. INTRODUCTION Spinor norm was first defined by Dieudonné and Kneser using Clifford algebras. Wall [21] defined the spinor norm using bilinear forms. These days, to compute the spinor norm, one uses the definition of Wall. In this paper, we develop a new definition of the spinor norm for split and twisted orthogonal groups. Our definition of the spinornorm is rich in the sense, that itis algorithmic in nature. Now one can compute spinor norm using a Gaussian elimination algorithm that we develop in this paper. This paper can be seen as an extension of our earlier work in the book chapter [3], where we described Gaussian elimination algorithms for orthogonal and symplectic groups in the context of public key cryptography. In computational group theory, one always looks for algorithms to solve the word problem. For a group G defined by a set of generators hXi = G, the problem is to write g ∈ G as a word in X: we say that this is the word problem for G (for details, see [18, Section 1.4]). Brooksbank [4] and Costi [10] developed algorithms similar to ours for classical groups over finite fields.
    [Show full text]
  • Arxiv:Hep-Th/9905112V1 17 May 1999 C E a -Al [email protected]
    SU-ITP-99/22 KUL-TF-99/16 PSU-TH-208 hep-th/9905112 May 17, 1999 Supertwistors as Quarks of SU(2, 2|4) Piet Claus†a, Murat Gunaydin∗b, Renata Kallosh∗∗c, J. Rahmfeld∗∗d and Yonatan Zunger∗∗e † Instituut voor theoretische fysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium ∗ Physics Department, Penn State University, University Park, PA, 1682, USA ∗∗ Physics Department, Stanford University, Stanford, CA 94305-4060, USA Abstract 5 The GS superstring on AdS5 × S has a nonlinearly realized, spontaneously arXiv:hep-th/9905112v1 17 May 1999 broken SU(2, 2|4) symmetry. Here we introduce a two-dimensional model in which the unbroken SU(2, 2|4) symmetry is linearly realized. The basic vari- ables are supertwistors, which transform in the fundamental representation of this supergroup. The quantization of this supertwistor model leads to the complete oscillator construction of the unitary irreducible representations of the centrally extended SU(2, 2|4). They include the states of d = 4 SYM theory, massless and KK states of AdS5 supergravity, and the descendants on AdS5 of the standard mas- sive string states, which form intermediate and long massive supermultiplets. We present examples of long massive supermultiplets and discuss possible states of solitonic and (p,q) strings. a e-mail: [email protected]. b e-mail: [email protected]. c e-mail: [email protected]. d e-mail: [email protected]. e e-mail: [email protected]. 1 Introduction Supertwistors have not yet been fully incorporated into the study of the AdS/CFT correspondence [1].
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Finite Generation of Symmetric Ideals
    FINITE GENERATION OF SYMMETRIC IDEALS MATTHIAS ASCHENBRENNER AND CHRISTOPHER J. HILLAR In memoriam Karin Gatermann (1965–2005 ). Abstract. Let A be a commutative Noetherian ring, and let R = A[X] be the polynomial ring in an infinite collection X of indeterminates over A. Let SX be the group of permutations of X. The group SX acts on R in a natural way, and this in turn gives R the structure of a left module over the left group ring R[SX ]. We prove that all ideals of R invariant under the action of SX are finitely generated as R[SX ]-modules. The proof involves introducing a certain well-quasi-ordering on monomials and developing a theory of Gr¨obner bases and reduction in this setting. We also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented, with the above framework providing a suitable context in which to study it. 1. Introduction A pervasive theme in invariant theory is that of finite generation. A fundamen- tal example is a theorem of Hilbert stating that the invariant subrings of finite- dimensional polynomial algebras over finite groups are finitely generated [6, Corol- lary 1.5]. In this article, we study invariant ideals of infinite-dimensional polynomial rings. Of course, when the number of indeterminates is finite, Hilbert’s basis theo- rem tells us that any ideal (invariant or not) is finitely generated. Our setup is as follows. Let X be an infinite collection of indeterminates, and let SX be the group of permutations of X.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Computational Topics in Lie Theory and Representation Theory
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Computational Topics in Lie Theory and Representation Theory Thomas J. Apedaile Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Applied Statistics Commons Recommended Citation Apedaile, Thomas J., "Computational Topics in Lie Theory and Representation Theory" (2014). All Graduate Theses and Dissertations. 2156. https://digitalcommons.usu.edu/etd/2156 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. COMPUTATIONAL TOPICS IN LIE THEORY AND REPRESENTATION THEORY by Thomas J. Apedaile A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics Approved: Ian Anderson Nathan Geer Major Professor Committee Member Zhaohu Nie Mark R McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright c Thomas J. Apedaile 2014 All Rights Reserved iii ABSTRACT Computational Topics in Lie Theory and Representation Theory by Thomas J. Apedaile, Master of Science Utah State University, 2014 Major Professor: Dr. Ian Anderson Department: Mathematics and Statistics The computer algebra system Maple contains a basic set of commands for work- ing with Lie algebras. The purpose of this thesis was to extend the functionality of these Maple packages in a number of important areas. First, programs for defining multiplication in several types of Cayley algebras, Jordan algebras and Clifford algebras were created to allow users to perform a variety of calculations.
    [Show full text]
  • Lie Algebras and Representation Theory Andreasˇcap
    Lie Algebras and Representation Theory Fall Term 2016/17 Andreas Capˇ Institut fur¨ Mathematik, Universitat¨ Wien, Nordbergstr. 15, 1090 Wien E-mail address: [email protected] Contents Preface v Chapter 1. Background 1 Group actions and group representations 1 Passing to the Lie algebra 5 A primer on the Lie group { Lie algebra correspondence 8 Chapter 2. General theory of Lie algebras 13 Basic classes of Lie algebras 13 Representations and the Killing Form 21 Some basic results on semisimple Lie algebras 29 Chapter 3. Structure theory of complex semisimple Lie algebras 35 Cartan subalgebras 35 The root system of a complex semisimple Lie algebra 40 The classification of root systems and complex simple Lie algebras 54 Chapter 4. Representation theory of complex semisimple Lie algebras 59 The theorem of the highest weight 59 Some multilinear algebra 63 Existence of irreducible representations 67 The universal enveloping algebra and Verma modules 72 Chapter 5. Tools for dealing with finite dimensional representations 79 Decomposing representations 79 Formulae for multiplicities, characters, and dimensions 83 Young symmetrizers and Weyl's construction 88 Bibliography 93 Index 95 iii Preface The aim of this course is to develop the basic general theory of Lie algebras to give a first insight into the basics of the structure theory and representation theory of semisimple Lie algebras. A problem one meets right in the beginning of such a course is to motivate the notion of a Lie algebra and to indicate the importance of representation theory. The simplest possible approach would be to require that students have the necessary background from differential geometry, present the correspondence between Lie groups and Lie algebras, and then move to the study of Lie algebras, which are easier to understand than the Lie groups themselves.
    [Show full text]
  • Stabilizers of Lattices in Lie Groups
    Journal of Lie Theory Volume 4 (1994) 1{16 C 1994 Heldermann Verlag Stabilizers of Lattices in Lie Groups Richard D. Mosak and Martin Moskowitz Communicated by K. H. Hofmann Abstract. Let G be a connected Lie group with Lie algebra g, containing a lattice Γ. We shall write Aut(G) for the group of all smooth automorphisms of G. If A is a closed subgroup of Aut(G) we denote by StabA(Γ) the stabilizer of Γ n n in A; for example, if G is R , Γ is Z , and A is SL(n;R), then StabA(Γ)=SL(n;Z). The latter is, of course, a lattice in SL(n;R); in this paper we shall investigate, more generally, when StabA(Γ) is a lattice (or a uniform lattice) in A. Introduction Let G be a connected Lie group with Lie algebra g, containing a lattice Γ; so Γ is a discrete subgroup and G=Γ has finite G-invariant measure. We shall write Aut(G) for the group of all smooth automorphisms of G, and M(G) = α Aut(G): mod(α) = 1 for the group of measure-preserving automorphisms off G2 (here mod(α) is thegcommon ratio measure(α(F ))/measure(F ), for any measurable set F G of positive, finite measure). If A is a closed subgroup ⊂ of Aut(G) we denote by StabA(Γ) the stabilizer of Γ in A, in other words α A: α(Γ) = Γ . The main question of this paper is: f 2 g When is StabA(Γ) a lattice (or a uniform lattice) in A? We point out that the thrust of this question is whether the stabilizer StabA(Γ) is cocompact or of cofinite volume, since in any event, in all cases of interest, the stabilizer is discrete (see Prop.
    [Show full text]
  • Chapter 1 BASICS of GROUP REPRESENTATIONS
    Chapter 1 BASICS OF GROUP REPRESENTATIONS 1.1 Group representations A linear representation of a group G is identi¯ed by a module, that is by a couple (D; V ) ; (1.1.1) where V is a vector space, over a ¯eld that for us will always be R or C, called the carrier space, and D is an homomorphism from G to D(G) GL (V ), where GL(V ) is the space of invertible linear operators on V , see Fig. ??. Thus, we ha½ve a is a map g G D(g) GL(V ) ; (1.1.2) 8 2 7! 2 with the linear operators D(g) : v V D(g)v V (1.1.3) 2 7! 2 satisfying the properties D(g1g2) = D(g1)D(g2) ; D(g¡1 = [D(g)]¡1 ; D(e) = 1 : (1.1.4) The product (and the inverse) on the righ hand sides above are those appropriate for operators: D(g1)D(g2) corresponds to acting by D(g2) after having appplied D(g1). In the last line, 1 is the identity operator. We can consider both ¯nite and in¯nite-dimensional carrier spaces. In in¯nite-dimensional spaces, typically spaces of functions, linear operators will typically be linear di®erential operators. Example Consider the in¯nite-dimensional space of in¯nitely-derivable functions (\functions of class 1") Ã(x) de¯ned on R. Consider the group of translations by real numbers: x x + a, C 7! with a R. This group is evidently isomorphic to R; +. As we discussed in sec ??, these transformations2 induce an action D(a) on the functions Ã(x), de¯ned by the requirement that the transformed function in the translated point x + a equals the old original function in the point x, namely, that D(a)Ã(x) = Ã(x a) : (1.1.5) ¡ 1 Group representations 2 It follows that the translation group admits an in¯nite-dimensional representation over the space V of 1 functions given by the di®erential operators C d d a2 d2 D(a) = exp a = 1 a + + : : : : (1.1.6) ¡ dx ¡ dx 2 dx2 µ ¶ In fact, we have d a2 d2 dà a2 d2à D(a)Ã(x) = 1 a + + : : : Ã(x) = Ã(x) a (x) + (x) + : : : = Ã(x a) : ¡ dx 2 dx2 ¡ dx 2 dx2 ¡ · ¸ (1.1.7) In most of this chapter we will however be concerned with ¯nite-dimensional representations.
    [Show full text]
  • Be the Integral Symplectic Group and S(G) Be the Set of All Positive Integers Which Can Occur As the Order of an Element in G
    FINITE ORDER ELEMENTS IN THE INTEGRAL SYMPLECTIC GROUP KUMAR BALASUBRAMANIAN, M. RAM MURTY, AND KARAM DEO SHANKHADHAR Abstract For g 2 N, let G = Sp(2g; Z) be the integral symplectic group and S(g) be the set of all positive integers which can occur as the order of an element in G. In this paper, we show that S(g) is a bounded subset of R for all positive integers g. We also study the growth of the functions f(g) = jS(g)j, and h(g) = maxfm 2 N j m 2 S(g)g and show that they have at least exponential growth. 1. Introduction Given a group G and a positive integer m 2 N, it is natural to ask if there exists k 2 G such that o(k) = m, where o(k) denotes the order of the element k. In this paper, we make some observations about the collection of positive integers which can occur as orders of elements in G = Sp(2g; Z). Before we proceed further we set up some notations and briefly mention the questions studied in this paper. Let G = Sp(2g; Z) be the group of all 2g × 2g matrices with integral entries satisfying > A JA = J 0 I where A> is the transpose of the matrix A and J = g g . −Ig 0g α1 αk Throughout we write m = p1 : : : pk , where pi is a prime and αi > 0 for all i 2 f1; 2; : : : ; kg. We also assume that the primes pi are such that pi < pi+1 for 1 ≤ i < k.
    [Show full text]