Math 263A Notes: Algebraic Combinatorics and Symmetric Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arithmetic Equivalence and Isospectrality
ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK . -
Finite Generation of Symmetric Ideals
FINITE GENERATION OF SYMMETRIC IDEALS MATTHIAS ASCHENBRENNER AND CHRISTOPHER J. HILLAR In memoriam Karin Gatermann (1965–2005 ). Abstract. Let A be a commutative Noetherian ring, and let R = A[X] be the polynomial ring in an infinite collection X of indeterminates over A. Let SX be the group of permutations of X. The group SX acts on R in a natural way, and this in turn gives R the structure of a left module over the left group ring R[SX ]. We prove that all ideals of R invariant under the action of SX are finitely generated as R[SX ]-modules. The proof involves introducing a certain well-quasi-ordering on monomials and developing a theory of Gr¨obner bases and reduction in this setting. We also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented, with the above framework providing a suitable context in which to study it. 1. Introduction A pervasive theme in invariant theory is that of finite generation. A fundamen- tal example is a theorem of Hilbert stating that the invariant subrings of finite- dimensional polynomial algebras over finite groups are finitely generated [6, Corol- lary 1.5]. In this article, we study invariant ideals of infinite-dimensional polynomial rings. Of course, when the number of indeterminates is finite, Hilbert’s basis theo- rem tells us that any ideal (invariant or not) is finitely generated. Our setup is as follows. Let X be an infinite collection of indeterminates, and let SX be the group of permutations of X. -
NOTES on FINITE GROUP REPRESENTATIONS in Fall 2020, I
NOTES ON FINITE GROUP REPRESENTATIONS CHARLES REZK In Fall 2020, I taught an undergraduate course on abstract algebra. I chose to spend two weeks on the theory of complex representations of finite groups. I covered the basic concepts, leading to the classification of representations by characters. I also briefly addressed a few more advanced topics, notably induced representations and Frobenius divisibility. I'm making the lectures and these associated notes for this material publicly available. The material here is standard, and is mainly based on Steinberg, Representation theory of finite groups, Ch 2-4, whose notation I will mostly follow. I also used Serre, Linear representations of finite groups, Ch 1-3.1 1. Group representations Given a vector space V over a field F , we write GL(V ) for the group of bijective linear maps T : V ! V . n n When V = F we can write GLn(F ) = GL(F ), and identify the group with the group of invertible n × n matrices. A representation of a group G is a homomorphism of groups φ: G ! GL(V ) for some representation choice of vector space V . I'll usually write φg 2 GL(V ) for the value of φ on g 2 G. n When V = F , so we have a homomorphism φ: G ! GLn(F ), we call it a matrix representation. matrix representation The choice of field F matters. For now, we will look exclusively at the case of F = C, i.e., representations in complex vector spaces. Remark. Since R ⊆ C is a subfield, GLn(R) is a subgroup of GLn(C). -
Arxiv:1207.1472V2 [Math.CV]
SOME SIMPLIFICATIONS IN THE PRESENTATIONS OF COMPLEX POWER SERIES AND UNORDERED SUMS OSWALDO RIO BRANCO DE OLIVEIRA Abstract. This text provides very easy and short proofs of some basic prop- erties of complex power series (addition, subtraction, multiplication, division, rearrangement, composition, differentiation, uniqueness, Taylor’s series, Prin- ciple of Identity, Principle of Isolated Zeros, and Binomial Series). This is done by simplifying the usual presentation of unordered sums of a (countable) family of complex numbers. All the proofs avoid formal power series, double series, iterated series, partial series, asymptotic arguments, complex integra- tion theory, and uniform continuity. The use of function continuity as well as epsilons and deltas is kept to a mininum. Mathematics Subject Classification: 30B10, 40B05, 40C15, 40-01, 97I30, 97I80 Key words and phrases: Power Series, Multiple Sequences, Series, Summability, Complex Analysis, Functions of a Complex Variable. Contents 1. Introduction 1 2. Preliminaries 2 3. Absolutely Convergent Series and Commutativity 3 4. Unordered Countable Sums and Commutativity 5 5. Unordered Countable Sums and Associativity. 9 6. Sum of a Double Sequence and The Cauchy Product 10 7. Power Series - Algebraic Properties 11 8. Power Series - Analytic Properties 14 References 17 arXiv:1207.1472v2 [math.CV] 27 Jul 2012 1. Introduction The objective of this work is to provide a simplification of the theory of un- ordered sums of a family of complex numbers (in particular, for a countable family of complex numbers) as well as very easy proofs of basic operations and properties concerning complex power series, such as addition, scalar multiplication, multipli- cation, division, rearrangement, composition, differentiation (see Apostol [2] and Vyborny [21]), Taylor’s formula, principle of isolated zeros, uniqueness, principle of identity, and binomial series. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
Covariances of Symmetric Statistics
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF MULTIVARIATE ANALYSIS 41, 14-26 (1992) Covariances of Symmetric Statistics RICHARD A. VITALE Universily of Connecticut Communicared by C. R. Rao We examine the second-order structure arising when a symmetric function is evaluated over intersecting subsets of random variables. The original work of Hoeffding is updated with reference to later results. New representations and inequalities are presented for covariances and applied to U-statistics. 0 1992 Academic Press. Inc. 1. INTRODUCTION The importance of the symmetric use of sample observations was apparently first observed by Halmos [6] and, following the pioneering work of Hoeffding [7], has been reflected in the active study of U-statistics (e.g., Hoeffding [8], Rubin and Vitale [ 111, Dynkin and Mandelbaum [2], Mandelbaum and Taqqu [lo] and, for a lucid survey of the classical theory Serfling [12]). An important feature is the ANOVA-type expansion introduced by Hoeffding and its application to finite-sample inequalities, Efron and Stein [3], Karlin and Rinnott [9], Bhargava Cl], Takemura [ 143, Vitale [16], Steele [ 131). The purpose here is to survey work on this latter topic and to present new results. After some preliminaries, Section 3 organizes for comparison three approaches to the ANOVA-type expansion. The next section takes up characterizations and representations of covariances. These are then used to tighten an important inequality of Hoeffding and, in the last section, to study the structure of U-statistics. 2. NOTATION AND PRELIMINARIES The general setup is a supply X,, X,, . -
Class Numbers of Totally Real Number Fields
CLASS NUMBERS OF TOTALLY REAL NUMBER FIELDS BY JOHN C. MILLER A dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Henryk Iwaniec and approved by New Brunswick, New Jersey May, 2015 ABSTRACT OF THE DISSERTATION Class numbers of totally real number fields by John C. Miller Dissertation Director: Henryk Iwaniec The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. This thesis describes a new approach. By finding nontrivial lower bounds for sums over prime ideals of the Hilbert class field, we establish upper bounds for class numbers of fields of larger discriminant. This analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to determine the class numbers of many number fields that have previously been untreatable by any known method. For example, we consider the cyclotomic fields and their real subfields. Surprisingly, the class numbers of cyclotomic fields have only been determined for fields of small conductor, e.g. for prime conductors up to 67, due to the problem of finding the class number of its maximal real subfield, a problem first considered by Kummer. Our results have significantly improved the situation. We also study the cyclotomic Zp-extensions of the rationals. -
REPRESENTATION THEORY WEEK 7 1. Characters of GL Kand Sn A
REPRESENTATION THEORY WEEK 7 1. Characters of GLk and Sn A character of an irreducible representation of GLk is a polynomial function con- stant on every conjugacy class. Since the set of diagonalizable matrices is dense in GLk, a character is defined by its values on the subgroup of diagonal matrices in GLk. Thus, one can consider a character as a polynomial function of x1,...,xk. Moreover, a character is a symmetric polynomial of x1,...,xk as the matrices diag (x1,...,xk) and diag xs(1),...,xs(k) are conjugate for any s ∈ Sk. For example, the character of the standard representation in E is equal to x1 + ⊗n n ··· + xk and the character of E is equal to (x1 + ··· + xk) . Let λ = (λ1,...,λk) be such that λ1 ≥ λ2 ≥ ···≥ λk ≥ 0. Let Dλ denote the λj determinant of the k × k-matrix whose i, j entry equals xi . It is clear that Dλ is a skew-symmetric polynomial of x1,...,xk. If ρ = (k − 1,..., 1, 0) then Dρ = i≤j (xi − xj) is the well known Vandermonde determinant. Let Q Dλ+ρ Sλ = . Dρ It is easy to see that Sλ is a symmetric polynomial of x1,...,xk. It is called a Schur λ1 λk polynomial. The leading monomial of Sλ is the x ...xk (if one orders monomials lexicographically) and therefore it is not hard to show that Sλ form a basis in the ring of symmetric polynomials of x1,...,xk. Theorem 1.1. The character of Wλ equals to Sλ. I do not include a proof of this Theorem since it uses beautiful but hard combina- toric. -
Problem 1 Show That If Π Is an Irreducible Representation of a Compact Lie Group G Then Π∨ Is Also Irreducible
Problem 1 Show that if π is an irreducible representation of a compact lie group G then π_ is also irreducible. Give an example of a G and π such that π =∼ π_, and another for which π π_. Is this true for general groups? R 2 Since G is a compact Lie group, we can apply Schur orthogonality to see that G jχπ_ (g)j dg = R 2 R 2 _ G jχπ(g)j dg = G jχπ(g)j dg = 1, so π is irreducible. For any G, the trivial representation π _ i i satisfies π ' π . For G the cyclic group of order 3 generated by g, the representation π : g 7! ζ3 _ i −i is not isomorphic to π : g 7! ζ3 . This is true for finite dimensional irreducible representations. This follows as if W ⊆ V a proper, non-zero G-invariant representation for a group G, then W ? = fφ 2 V ∗jφ(W ) = 0g is a proper, non-zero G-invariant subspace and applying this to V ∗ as V ∗∗ =∼ V we get V is irreducible if and only if V ∗ is irreducible. This is false for general representations and general groups. Take G = S1 to be the symmetric group on countably infinitely many letters, and let G act on a vector space V over C with basis e1; e2; ··· by sending σ : ei 7! eσ(i). Let W be the sub-representation given by the kernel of the map P P V ! C sending λiei 7! λi. Then W is irreducible because given any λ1e1 + ··· + λnen 2 V −1 where λn 6= 0, and we see that λn [(n n + 1) − 1] 2 C[G] sends this to en+1 − en, and elements like ∗ ∗ this span W . -
Generating Functions from Symmetric Functions Anthony Mendes And
Generating functions from symmetric functions Anthony Mendes and Jeffrey Remmel Abstract. This monograph introduces a method of finding and refining gen- erating functions. By manipulating combinatorial objects known as brick tabloids, we will show how many well known generating functions may be found and subsequently generalized. New results are given as well. The techniques described in this monograph originate from a thorough understanding of a connection between symmetric functions and the permu- tation enumeration of the symmetric group. Define a homomorphism ξ on the ring of symmetric functions by defining it on the elementary symmetric n−1 function en such that ξ(en) = (1 − x) /n!. Brenti showed that applying ξ to the homogeneous symmetric function gave a generating function for the Eulerian polynomials [14, 13]. Beck and Remmel reproved the results of Brenti combinatorially [6]. A handful of authors have tinkered with their proof to discover results about the permutation enumeration for signed permutations and multiples of permuta- tions [4, 5, 51, 52, 53, 58, 70, 71]. However, this monograph records the true power and adaptability of this relationship between symmetric functions and permutation enumeration. We will give versatile methods unifying a large number of results in the theory of permutation enumeration for the symmet- ric group, subsets of the symmetric group, and assorted Coxeter groups, and many other objects. Contents Chapter 1. Brick tabloids in permutation enumeration 1 1.1. The ring of formal power series 1 1.2. The ring of symmetric functions 7 1.3. Brenti’s homomorphism 21 1.4. Published uses of brick tabloids in permutation enumeration 30 1.5. -
Extending Real-Valued Characters of Finite General Linear and Unitary Groups on Elements Related to Regular Unipotents
EXTENDING REAL-VALUED CHARACTERS OF FINITE GENERAL LINEAR AND UNITARY GROUPS ON ELEMENTS RELATED TO REGULAR UNIPOTENTS ROD GOW AND C. RYAN VINROOT Abstract. Let GL(n; Fq)hτi and U(n; Fq2 )hτi denote the finite general linear and unitary groups extended by the transpose inverse automorphism, respec- tively, where q is a power of p. Let n be odd, and let χ be an irreducible character of either of these groups which is an extension of a real-valued char- acter of GL(n; Fq) or U(n; Fq2 ). Let yτ be an element of GL(n; Fq)hτi or 2 U(n; Fq2 )hτi such that (yτ) is regular unipotent in GL(n; Fq) or U(n; Fq2 ), respectively. We show that χ(yτ) = ±1 if χ(1) is prime to p and χ(yτ) = 0 oth- erwise. Several intermediate results on real conjugacy classes and real-valued characters of these groups are obtained along the way. 1. Introduction Let F be a field and let n be a positive integer. Let GL(n; F) denote the general linear group of degree n over F. In the special case that F is the finite field of order q, we denote the corresponding general linear group by GL(n; Fq). Let τ denote the involutory automorphism of GL(n; F) which maps an element g to its transpose inverse (g0)−1, where g0 denotes the transpose of g, and let GL(n; F)hτi denote the semidirect product of GL(n; F) by τ. Thus in GL(n; F)hτi, we have τ 2 = 1 and τgτ = (g0)−1 for g 2 GL(n; F). -
Categories with Negation 3
CATEGORIES WITH NEGATION JAIUNG JUN 1 AND LOUIS ROWEN 2 In honor of our friend and colleague, S.K. Jain. Abstract. We continue the theory of T -systems from the work of the second author, describing both ground systems and module systems over a ground system (paralleling the theory of modules over an algebra). Prime ground systems are introduced as a way of developing geometry. One basic result is that the polynomial system over a prime system is prime. For module systems, special attention also is paid to tensor products and Hom. Abelian categories are replaced by “semi-abelian” categories (where Hom(A, B) is not a group) with a negation morphism. The theory, summarized categorically at the end, encapsulates general algebraic structures lacking negation but possessing a map resembling negation, such as tropical algebras, hyperfields and fuzzy rings. We see explicitly how it encompasses tropical algebraic theory and hyperfields. Contents 1. Introduction 2 1.1. Objectives 3 1.2. Main results 3 2. Background 4 2.1. Basic structures 4 2.2. Symmetrization and the twist action 7 2.3. Ground systems and module systems 8 2.4. Morphisms of systems 10 2.5. Function triples 11 2.6. The role of universal algebra 13 3. The structure theory of ground triples via congruences 14 3.1. The role of congruences 14 3.2. Prime T -systems and prime T -congruences 15 3.3. Annihilators, maximal T -congruences, and simple T -systems 17 4. The geometry of prime systems 17 4.1. Primeness of the polynomial system A[λ] 17 4.2.